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WHO AM I?

Efstratios Gavves

 Assistant Professor at the University of Amsterdam

− Scientific Manager at the QUVA Lab

− QUVA Lab is a joint Academic-Industry Lab between UVA and Qualcomm

− Teaching Deep Learning (Slides, code available at uvadlc.github.io)

 Co-founder of Ellogon.AI

− Machine Learning for Clinical Trials and Pharmaceutical Design

− Partnering up with the Dutch National Cancer Institute against oncology

− One of the biggest research centers worldwide with huge data

− If interest, please come find me
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egavves@uva.nl

@egavves

mailto:egavves@uva.nl
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VIDEO MODELLING TODAY: SHORT

 Spatiotemporal Encoders: convolve up to a few dozen frames

 Action Classification: process up to few seconds

 Efficient Video Models: don’t really exist

 Self-supervised Learning: predicting immediate spatio-temporal context
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VIDEO MODELLING TOMORROW: LONG

 Spatiotemporal Encoders: thousands of frames

 Sequence Learning of Complex Actions: dozens of minutes or hours long

 Efficient Video Models: scaling up cannot be done without contemplating efficiency

 Self-supervised Learning: from spatio-temporal context to temporal properties
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Video Temporal Modelling of tomorrow about encoding transitions over long term and dynamics …

… instead of encoding short spatio-temporal (static) patterns
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VIDEO DYNAMICS LEARNING

 When it comes to long or streaming videos the important questions are:
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Is there a difference between a video sequence and other types of sequences?

What are the meaningful dynamics of the video content and how to capture them?

How to encode the meaningful dynamics in a “non-catastrophic forgetting” manner?

How to encode multiple temporal complexities of dynamics?

Can we design video specialized models and architectures for dynamics?

Not models that extend our favorite 2D convnet
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VIDEOLSTM 

 VideoLSTM convolves, attends and flows for action recognition, CVIU 2018

− Code: https://github.com/zhenyangli/VideoLSTM

Zhenyang Li Efstratios Gavves Mihir Jain Cees Snoek

https://github.com/zhenyangli/VideoLSTM
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VIDEOLSTM: TL;DR

 LSTM relies on inner products

− Equivalent to translation-variant fully Connected MLPs

− Why not replace all operations with convolutions?

 Attention in LSTMs typically on RGB inputs

− What moves is what acts

− Why not use motion just for the attention?

 VideoLSTM proposes a Convolutional A(ttention) LSTM model

− The video encoding using RGB channels

− The attention encoding using motion channels
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CONVOLUTIONAL (A) LSTM

 Replace the fully connected multiplicative operations in an LSTM unit with convolutional operations

 Generate attention by shallow ConvNet instead of MLP
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Convolutional ALSTM preserves spatial 

dimensions over time
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MOTION-BASED ATTENTION

 Motion offers crucial clue where to attend in video
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∗∗∗∗

Attention	map	→

Flow	image	→

Prediction	→ “Tennis	swing” “Tennis	swing” “Tennis	swing”“Tennis	swing”

∗ ∗ ∗∗

⊙ ⊙ ⊙⊙

Video	frame	→

Motion information to infer the attention in each frame
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EXPERIMENTS
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Convolutions + Attention makes sense!

Motion for Attention makes sense!

Localization for free
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QUALITATIVE RESULTS
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VIDEOLSTM: WHAT HAVE WE LEARNED?

 Hardwiring convolutions in attention LSTM

 Derives attention from what moves in video

 Leads to a promising and well performing video-unique deep architecture

 Localization from a video-level action class label only
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VIDEOLSTM: OPEN QUESTION

13

Does LSTM really encode sequential dynamics?

Or does it simply perform some sort of pooling?



University of Amsterdam / Ellogon.AI

VIDEOTIME

 Video Time: Properties, Encoders and Evaluation, BMVC 2018

− Code: https://github.com/QUVA-Lab/

Amir Ghodrati Efstratios Gavves Cees Snoek

https://github.com/QUVA-Lab/
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VIDEOTIME: TL;DR

 What is the contribution of modeling time in video tasks?

− Considering video as a sequence, do sequence models like LSTMs really encode temporal dynamics?

 What does it even mean “Encode Temporal Dynamics”?

− Investigate properties of times in videos for which time is the modifier

 VideoTime proposes Time-Aligned DenseNets

− Much better temporal encoders!!
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PLAYING WITH TIME
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A or    B?
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ALL OF THEM ARE IN REVERSE
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A or    B?
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(SOME) PROPERTIES OF TIME IN VIDEOS

 There is a clear distinction between the forward and the backward arrow of time
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HOW TO QUANTIFY THESE PROPERTIES?

 Temporal asymmetry → Arrow of time prediction

 Temporal continuity → Future Frame Selection

 Temporal causality → Action Template Classification
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TWO DOMINANT APPROACHES
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LSTMs learn transitions between subsequent states 3D convolutions learn spatiotemporal correlations

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural 

computation, 1997

Ji et al. 3d convolutional neural networks for human action 

recognition. PAMI, 2013

Tran et al., Learning Spatiotemporal Features with 3D 

Convolutional Networks, ICCV 2015
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LSTM AND C3D: ARROW OF TIME?
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LSTM

C3D
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REVISITING RECURRENT NEURAL NETWORKS

 Recurrent Nets are highly sensitive dynamical systems (Pascanu, 2013)

− Even considering highly discriminative one-hot vector inputs

− Gradients very sensitive to initialization → Poor learning! → No generalization

 Visual features over time -even the best ones- are:

− much noisier

− much less discriminative 

− much more redundant

 Learning LSTM on videos is orders of magnitude harder

− Chaotic regime → no useful gradients → absolutely no useful learning

− Forward and Backward LSTM score the same accuracy on arrow of time
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Basically, with high-dim noisy inputs LSTMs do not do sequence modelling but some weird entangled pooling
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PROPOSAL: TIME-ALIGNED DENSENET

 ConvNets are much better with vanishing and exploding gradients, noisy and redundant inputs

 No parameter sharing → no chaotic regime

 Moreover, the premise of LSTM parameter sharing is infinite Markov chains

 In practice, however, we chop it off at T steps → like a ConvNet with T layers

 Idea: Why not flip the ConvNet to align the layers with time steps?
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ConvNets can handle vanishing/exploding/noisy/redundant because they do not share parameters.

Hypothesis
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PROPOSAL: TIME-ALIGNED DENSENET

 Idea: Why not flip the ConvNet to align the layers with time steps?

 No vanishing/exploding gradients, no problems with noisy and redundant inputs
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RECHECKING ARROW OF TIME

 Time-Aligned DenseNet gives much cleaner temporal clusters
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Conclusion: Poor temporal modelling is likely due to hard –and thus unsuccessful- optimization



University of Amsterdam / Ellogon.AI

EXPERIMENTS
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Arrow of time: improved temporal asymmetry 

Especially for temporally causal classes

LSTM better than C3D

chance

Future frame: improved temporal continuity 

Especially for temporally causal classes

C3D better than LSTM

Action Templates: improved temporal causality 

C3D better than LSTM

Sometimes, correlation implies causation :P
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VIDEOTIME: WHAT HAVE WE LEARNED?

 Poor temporal modelling is likely due to hard –and thus unsuccessful- optimization

 As the complexity of a task increases, spatiotemporal correlation learning methods like C3D performs 

better than transition-based learning methods like LSTM

 Time-aligned DenseNet performs better than LSTM mostly due to shared parameterization of LSTMs
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VIDEOTIME: OPEN QUESTION
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Sure, we can model time better. So what?

What about using it for strong self-supervised learning?

Maybe time is more important in modelling & recognizing complex actions?
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TIMECEPTION

 VideoLSTM convolves, attends and flows for action recognition, CVIU 2019 (Oral on Tuesday)

− Code: https://github.com/noureldien/timeception

Noureldien Hussein Efstratios Gavves Arnold Smeulders

https://github.com/noureldien/timeception
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TIMECEPTION: TL;DR

 Most video methods today focus on few second videos

− Is this realistic? What happens with minutes-long, hours-long or even streaming videos?

 What does it even mean “Complex action”?

− Investigate properties of complex actions over long time videos

 Timeception

− Can scale up to dozens of minutes without a sweat at high accuracies
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1. Dependency 3. Temporal Extent2. Long-range



Problem Complex Actions



Problem Complex Actions

Preparing Breakfast Stirring Food

Complex Action One-action



Problem Complex Actions

Preparing Breakfast

Complex Action

1. Long-range

2. Temporal Extent

3. Temporal Dependency



get cook put wash

• • •

Problem 1. Long-range

One-action ~2 sec.



get cook put wash

• • •

Problem 1. Long-range

One-action ~2 sec.

Complex Action ~30 

sec.
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get cook put wash

• • •

Problem 3. Temporal Dependency

washputcookget



washputcookget

Problem 3. Temporal Dependency

get cook put wash

• • •



1. Dependency 3. Temporal Extent2. Long-range

Problem Complex Actions



Decomposition of convolutional operations the only way forward

But how can we make it permissible for minute long videos?

We note that all convolution decompositions are effectively chain

subspace projections

𝒘 ∝ 𝒘𝜶 ∗ 𝒘𝜷 ∗ 𝒘𝜸 ∗ ⋯

The order in the chain should not be really that important

Problem Design a model addressing all three properties?



Problem Subspace projections: Design Principles

1. Subspace modularity
3. Subspace efficiency2. Subspace balance
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Method Timeception
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Method Timeception

1. Dependency 3. Temporal Extent2. Long-range
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Method Efficiency
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Method Efficiency
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Method Timeception

1. Dependency 3. Temporal Extent2. Long-range
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Method Tolerating Temporal Extents

𝑇
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Method Tolerating Temporal Extents

𝑇

Temporal Convolution
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o
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Multi-scale Kernels
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Results Charades Dataset
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Results Temporal Footprint
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Results Layer Efficiency 
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Results Layer Effectiveness
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Results Layer Effectiveness
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Results Multi-Scale Kernels
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Tuesday, 

Oral 09.05
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TIMECEPTION
N. Hussein, E. Gavves, A. Smeulders



University of Amsterdam / Ellogon.AI

PUSHING THIS TO THE LIMIT: VIDEOGRAPH
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VIDEOGRAPH
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EXPERIMENTS
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TIMECEPTION/VIDEOGRAPH: WHAT HAVE WE LEARNED?

 Scaling up in time is possible if you do smart decomposition of the operations

 Larger models don’t have to mean immense parameters or computation times

 Organizing learned representations in graphs allows for clustering visual concepts reliably

− Explainable action recognition ?
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TIMECEPTION: OPEN QUESTIONS
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Can we go larger? Movie-long video?

Action detection in long videos?

Infinite long videos → Streaming?

Integrate dynamics learning more explicitly for fine grained complex actions?

Natively efficient video models?
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THANK YOU!
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