

LONG BEACH CALIFORNIA June 16-20, 2019

Tutorial on Action Classification and Video Modeling

Revisiting Spatiotemporal Convolutions for Video Analysis

Lorenzo Torresani

From handcrafted descriptors to spatiotemporal feature learning

STIPs

From [Laptev and Lindeberg, ICCV 2003]

SIFT-3D

From [Scovanner et al., ACM MM 2007]

HOG-3D

From [Kläser et al., BMVC 2008]

Improved Dense Trajectories

From [Wang and Schmid, ICCV 2013]

C3D

From [Tran et al., ICCV 2015]

I3D

From [Carreira and Zisserman, CVPR 2017]

P3D

From [Qiu et al., ICCV 2017]

Timeception

From [Hussein et al., CVPR 2018]

3D convolution: related work

- 3D CNNs for recognizing human actions in video were arguably first proposed in [Baccouche et al., HBU 2011] and [Ji et al., TPAMI 2012]
- Studied in parallel for unsupervised spatiotemporal feature learning with Restricted Boltzmann Machines [Taylor et al., ECCV 2010] and stacked ISA [Le et al. CVPR 2011]
- Shown to lead to strong action recognition results when trained on large-scale datasets [Tran et al., ICCV 2015]

 Demonstrated to generalize well to other video tasks, e.g., action detection [Shou et al., CVPR 2016], video captioning [Pan et al., CVPR 2016], and hand gesture recognition [Molchanov et al., CVPR 2016]

Figure from [Baccouche et al., HBU 2011]

Figure from [Le et al., CVPR 2011]

Figure from [Tran et al., ICCV 2015]

2D vs 3D convolution

Simplified illustration based on single input channel:

2D convolution on clip of T frames collapses temporal information

2D vs 3D convolution

Simplified illustration based on single input channel:

2D convolution on clip of T frames collapses temporal information

3D convolution preserves temporal information

[Taylor et al., ECCV10; Le et al., CVPR11; Ji et al. TPAMI13; Tran et al., ICCV15]

C3D [Tran, Bourdev, Fergus, Torresani, Paluri, ICCV 2015]

Large-scale training set: Sport1M [Karpathy et al., CVPR2014]

- 1.1M YouTube videos of 487 sport classes
- Train/test on provided split

- 5 2x2x2 max-pooling

C3D: classification accuracy on Sports1M

[Tran, Bourdev, Fergus, Torresani, Paluri, ICCV 2015]

Method	Number of Nets	Clip hit@1
Deep Video's Single-Frame + Multires [19]	3 nets	42.4
Deep Video's Slow Fusion [19]	1 net	41.9
C3D (trained from scratch)	1 net	44.9
C3D (fine-tuned from I380K pre-trained model)	1 net	46.1

C3D: classification on Sports1M

[Tran, Bourdev, Fergus, Torresani, Paluri, ICCV 2015]

C3D: visualization of low-level features

[Tran, Bourdev, Fergus, Torresani, Paluri, ICCV 2015]

3D filters in 1st layer:

Transfer learning with C3D

[Tran, Bourdev, Fergus, Torresani, Paluri, ICCV 2015]

C3D as generic features:

Test on 4 video recognition tasks using simple linear classifiers trained on C3D features

Transfer learning with C3D

Tran, Bourdev, Fergus, Torresani, Paluri, ICCV 2015]

Action categorization on UCF101:

linear SVM on iDT and frame-based CNN features

linear SVM on C3D and video-based CNNs from RGB

Method	Accuracy (%)
Imagenet + linear SVM	68.8
iDT w/ BoW + linear SVM	76.2
Deep networks [18]	65.4
Spatial stream network [36]	72.6
LRCN [6]	71.1
LSTM composite model [39]	75.8
C3D (1 net) + linear SVM	82.3
C3D (3 nets) + linear SVM	85.2

Transfer learning with C3D

[Tran, Bourdev, Fergus, Torresani, Paluri, ICCV 2015]

Generalization to other video analysis tasks:

ASLAN	YUPENN	UMD	Object
action similarity labeling	scene classification	scene classification	object recognition
[31]	[9]	[9]	[32]
68.7	96.2	77.7	12.0
78.3	98.1	87.7	22.3

[Carreira, Zisserman, CVPR 2017]

Large-margin winner of the action recognition and temporal segmentation tracks @ CVPR 2017 Charade challenge

Key-features:

- 2D Inception architecture adopted into a 3D CNN
- 3D filters initialized by "temporally inflating" 2D filters learned from InageNet
- Large-scale training on new Kinetics dataset
 (240K training videos, 400 action classes)
- Two-stream architecture operating on RGB and optical flow

Revisiting the role of 3D convolution in video analysis

Several recent empirical studies [Qiu et al., CVPR 2017; Tran et al., CVPR 2018; Xie et al., ECCV 2018; Tran et al., arXiv 2019] aimed at addressing several fundamental questions:

- Do we even need 3D convolution?
- If so, what layers should we make 3D, and what layers can be 2D?
- Is it beneficial to factorize spatiotemporal filters into disjoint space and time components?
- Is it useful to factorize spatiotemporal filters across channels?

- f-R2D processes the T frames independently
 - ✓ no temporal modeling whatsoever

- R2D treats the the *T* frames as channels
 - ✓ temporal information collapsed after the first layer

- MC*x*
 - ✓ 3D convs in first (x-1) groups, 2D convs in top groups
- rMCx (reversed mixed convolutions)
 - ✓ 2D convs in first (x-1) groups, 3D convs in top groups

Concurrently studied in [Xie et al., ECCV 2018] within I3D architecture:

- ✓ MCx are called "bottom-heavy" I3D
- ✓ rMCx are called "top-heavy" I3D

• (2+1)D: space-time factorization

A similar space-time factorization was proposed in [Qiu et al., CVPR 2017] within ResNet bottleneck blocks and in [Xie et al., ECCV 2018] within I3D architecture

Net	let # params Clip@1		Video@1
Input		16×1	12×112
R2D	11.4M	47.0	58.9
f-R2D	11.4M	50.3	60.5
R3D	33.4M	52.5	64.2
MC2	11.4M	53.1	64.2
MC3	11.7M	53.7	64.7
MC4	12.7M	53.7	65.1
MC5	16.9M	53.7	65.1
rMC2	33.3M	53.1	64.9
rMC3	33.0M	53.2	65.0
rMC4	32.0M	53.4	65.1
rMC5	27.9M	52.1	63.1
R(2+1)D	33.3M	56.8	68.0

Net	# params	Clip@1	Video@1	_	
Input		16×1	12×112	_	
R2D	11.4M	47.0	58.9	_	
f-R2D	11.4M	50.3	60.5		
R3D	33.4M	52.5	64.2		
MC2	11.4M	53.1	64.2		Big accuracy gap
MC3	11.7M	53.7	64.7		between
MC4	12.7M	53.7	65.1		2D and 3D CNNs
MC5	16.9M	53.7	65.1		
rMC2	33.3M	53.1	64.9		
rMC3	33.0M	53.2	65.0		
rMC4	32.0M	53.4	65.1		
rMC5	27.9M	52.1	63.1		
R(2+1)D	33.3M	56.8	68.0	_	

Net	# params	Clip@1	Video@1	
Input		16×1	12×112	
R2D	11.4M	47.0	58.9	
f-R2D	11.4M	50.3	60.5	
R3D	33.4M	52.5	64.2	
MC2	11.4M	53.1	64.2	
MC3	11.7M	53.7	64.7	
MC4	12.7M	53.7	65.1	
MC5	16.9M	53.7	65.1	R(2+1)D outperforms
rMC2	33.3M	53.1	64.9	R3D and all other 3D CNNs
rMC3	33.0M	53.2	65.0	
rMC4	32.0M	53.4	65.1	
rMC5	27.9M	52.1	63.1	
R(2+1)D	33.3M (56.8	68.0	

Net	# params	Clip@1	Video@1	
Input		16×1	12×112	
R2D	11.4M	47.0	58.9	
f-R2D	11.4M	50.3	60.5	
R3D	33.4M	52.5	64.2	
MC2	11.4M	53.1	64.2	
MC3	11.7M	53.7	64.7	Mixed 2D/3D CNNs
MC4	12.7M	53.7	65.1	do better than
MC5	16.9M	53.7	65.1	pure 3D
rMC2	33.3M	53.1	64.9	
rMC3	33.0M	53.2	65.0	
rMC4	32.0M	53.4	65.1	
rMC5	27.9M	52.1	63.1	
R(2+1)D	33.3M	56.8	68.0	

Empirical evaluation of different forms of spatiotemporal convolution

Independent results in [Xie et al., ECCV 2018] confirm these findings:

- Orange vs blue:
 S3D (space-time factorized I3D)
 outperforms I3D
- Solid vs dotted: top-heavy mixed convolutions do better than bottom-heavy mixed convolutions for same # FLOPs

Why is space-time factorization beneficial? [Tran et al., CVPR 2018]

- For the same number of parameters, (2+1)D factorization doubles number of nonlinearities (additional ReLU between spatial and temporal filtering)
- Space-time factorization renders optimization easier:

Channel-Separated 3D Networks

Du Tran

Heng Wang

Lorenzo Torresani

Matt Feiszli

Preprint available at https://arxiv.org/abs/1904.02811

group convolution: prior work

- To reduce #parameters and #FLOPS of 2D CNNs:
 - ✓ Adopted in AlexNet [Krizhevsky et al., NIPS12] to overcome GPU memory limits
 - ✓ Frequently used for mobile application, e.g., in MobileNets [Howard et al., arXiv2017], Xception [Chollet et al., CVPR17], ShuffleNet [Zhang et al. CVPR18]

- To improve accuracy of 2D CNNs:
 - ✓ ResNeXt [Xie et al., CVPR17] is a ResNet [He at al., CVPR16] with group convolutions, yielding better accuracy for the same number of parameters

filter c'

C subfilters

3D convolution

- #frames height width \uparrow #channels $(T \times H \times W \times C)$
- ullet Each filter operates on all $\,C\,$ channels of the 4D spatiotemporal tensor $\,({}^\prime\,$
- Each filter consists of C 3D <u>subfilters</u> $(n \times n \times n)$, each applied to a 3D spatiotemporal <u>channel</u> $(T \times H \times W)$

group 3D convolution

• Each filter operates on a subset of $\frac{C}{G}$ channels (G denotes # groups): each filter consists of $\frac{C}{G}$ 3D <u>subfilters</u> ($n \times n \times n$), each applied to a 3D spatiotemporal <u>channel</u> ($T \times H \times W$)

group 3D convolution

• Each filter operates on a subset of $\frac{C}{G}$ channels (G denotes # groups): each filter consists of $\frac{C}{G}$ 3D <u>subfilters</u> $(n \times n \times n)$, each applied to a 3D spatiotemporal <u>channel</u> $(T \times H \times W)$

group 3D convolution

• Each filter operates on a subset of $\frac{C}{G}$ channels (G denotes # groups): each filter consists of $\frac{C}{G}$ 3D <u>subfilters</u> $(n \times n \times n)$, each applied to a 3D spatiotemporal <u>channel</u> $(T \times H \times W)$

channel-separated 3D convolution

• Set # groups $G = C \rightarrow$ each filter operates on <u>one</u> channel only

channel-separated 3D network

• Use point-wise $1 \times 1 \times 1 \times C$ convs to restore some channel interactions before & after channel separation:

CSN using ResNet blocks

- Comparison between Channel-Separated Network (CSN) and ResNet3D
- Both using ResNet bottleneck block but CSN performs channel-separated 3D convs in all blocks

channel-separated 3D convs

CSN using ResNet blocks

- Comparison between Channel-Separated Network (CSN) and ResNet3D
- Both using ResNet bottleneck block but CSN performs channel-separated 3D convs in all blocks

CSN using ResNet blocks

- Comparison between Channel-Separated Network (CSN) and ResNet3D
- Both using ResNet bottleneck block but CSN performs channel-separated 3D convs in all blocks

Experimental Comparison

• Results on Kinetics-400:

"# channel interaction is a better predictor of accuracy than #parameters"

cluster of networks having similar # channel interactions but largely different #parameters

Experimental Comparison

"Channel-Separated 3D Convs > Group 3D Convs > Traditional 3D Convs"

Results on Kinetics-400 using nets of 50 layers

What makes CSNs work better?

• Lower test error and higher training error: channel separation acts as a regularizer

Results on Kinetics-400:

Method	pretrain	video@1	$\mathbf{GFLOPs} imes \mathbf{crops}$
ResNeXt	none	65.1	NA
ARTNet(d)	none	69.2	24×250
I3D	${\it ImageNet}$	71.1	$108 \times dense$
TSM	${\it ImageNet}$	72.5	$65\times NA$
MFNet	${\it ImageNet}$	72.8	$11\times NA$
Inception-ResNet	${\it ImageNet}$	73.0	NA
R(2+1)D	Sports1M	74.3	$152 \times dense$
A^2 -Net	${\it ImageNet}$	74.6	$41\times NA$
S3D-G	${\it ImageNet}$	74.7	$71 \times dense$
D3D	${\it ImageNet}$	75.9	NA
GloRe	${\it ImageNet}$	76.1	$55\times NA$
I3D+NLN	${\it ImageNet}$	77.7	359×30
SlowFast	none	78.9	213×30
SlowFast+NLN	none	79.8	234×30
CSN-152	Sports1M	79.0	96.7×30
ip-CSN-152	Sports1M	79.2	108.8×30

Results on Kinetics-400:

Method	pretrain	video@1	$\mathbf{GFLOPs} imes \mathbf{crops}$
ResNeXt	none	65.1	NA
ARTNet(d)	none	69.2	24×250
I3D	ImageNet	71.1	$108 \times dense$
TSM	ImageNet	72.5	$65\times NA$
MFNet	ImageNet	72.8	$11\times NA$
Inception-ResNet	ImageNet	73.0	NA
R(2+1)D	Sports1M	74.3	$152 \times dense$
A^2 -Net	ImageNet	74.6	$41\times NA$
S3D-G	ImageNet	74.7	$71 \times dense$
D3D	ImageNet	75.9	NA
GloRe	ImageNet	76.1	$55 \times NA$
I3D+NLN	ImageNet	77.7	359×30
SlowFast	none	78.9	213×30
SlowFast+NLN	none	79.8	234×30
CSN-152	Sports1M	79.0	96.7×30
ip-CSN-152	Sports1M	79.2	108.8×30

better than I3D + Non-Local Net

Results on Kinetics-400:

Method	pretrain	video@1	$\mathbf{GFLOPs}{ imes \mathbf{crops}}$
ResNeXt	none	65.1	NA
ARTNet(d)	none	69.2	$24{ imes}250$
I3D	${ m ImageNet}$	71.1	$108 \times dense$
TSM	${ m ImageNet}$	72.5	$65{ imes}{ m NA}$
MFNet	${\bf ImageNet}$	72.8	$11 \times NA$
Inception-ResNet	${\bf ImageNet}$	73.0	NA
R(2+1)D	Sports1M	74.3	$152 \times dense$
A^2 -Net	${\bf ImageNet}$	74.6	$41 \times NA$
S3D-G	${\rm ImageNet}$	74.7	$71 \times dense$
D3D	${\bf ImageNet}$	75.9	NA
GloRe	${\bf ImageNet}$	76.1	$55{ imes}{ m NA}$
I3D+NLN	${\bf ImageNet}$	77.7	359×30
SlowFast	none	78.9	213×30
SlowFast+NLN	none	79.8	$234{\times}30$
CSN-152	Sports1M	79.0	96.7×30
ip-CSN-152	Sports1M	79.2	108.8×30

a bit better than SlowFast

a bit worse than SlowFast + Non-Local Net

Results on Kinetics-400:

Method	pretrain	video@1	$\mathbf{GFLOPs}{ imes \mathbf{crops}}$
ResNeXt	none	65.1	NA
ARTNet(d)	none	69.2	$24{ imes}250$
I3D	ImageNet	71.1	$108 \times dense$
TSM	ImageNet	72.5	$65 \times \mathrm{NA}$
MFNet	ImageNet	72.8	$11 \times NA$
Inception-ResNet	ImageNet	73.0	NA
R(2+1)D	Sports1M	74.3	$152 \times dense$
A^2 -Net	ImageNet	74.6	$41 \times NA$
S3D-G	ImageNet	74.7	$71 \times dense$
D3D	ImageNet	75.9	NA
GloRe	ImageNet	76.1	$55{ imes}{ m NA}$
I3D+NLN	ImageNet	77.7	359×30
SlowFast	none	78.9	213×30
SlowFast+NLN	none	79.8	234×30
CSN-152	Sports1M	79.0	96.7×30
ip-CSN-152	Sports1M	79.2	108.8×30

3x faster than I3D+NLN

2x faster than SlowFast

State-of-the-art numbers on both Sports1M and Something-Something:

Sports1M

Method	input	video@1	video@5	$\mathbf{GFLOPs}{ imes \mathbf{crops}}$
C3D	RGB	61.1	85.2	N/A
P3D	RGB	66.4	87.4	N/A
Conv Pool	RGB+OF	71.7	90.4	N/A
R(2+1)D	RGB	73.0	91.5	$152 \times dense$
R(2+1)D	RGB+OF	73.3	91.9	$305 \times dense$
ip-CSN-101	RGB	74.9	92.6	63.6×10
ip-CSN-152	RGB	75.5	92.8	83.3×10

Something-Something

Method	pretrain	video@1
M-TRN	ImageNet	34.4
I3D + NL	ImageNet	44.4
I3D + NL + GCN	ImageNet	46.1
Motion Feature Net	none	43.9
TSM	Kinetics	44.8
TSM (ensemble)	Kinetics	46.8
ECO-Net	ImageNet	46.4
S3D-G	ImageNet	48.2
CSN-101	none	48.4
CSN-152	none	49.3

Visualization of CSN 3D filters $3 \times 3 \times \overline{3}$

CSN in 2nd group

Conclusions on spatiotemporal convolutions

- ✓ Do we even need 3D convolution?

 Yes, for the same #parameters 3D CNNs provide better accuracy than 2D CNNs
- ✓ If so, what layers should we make 3D, and what layers can be 2D?

 Top-heavy mixed convolutional nets perform better than pure 3D CNNs
- ✓ Is it beneficial to factorize spatiotemporal filters into disjoint space and time components? Factorized space-time kernels lead to easier optimization and better generalization
- ✓ Is it useful to factorize spatiotemporal filters across channels?

 Group and channel-separated 3D convolutions have fewer parameters, reduce #FLOPs and yield better action recognition accuracy