

LONG BEACH CALIFORNIA June 16-20, 2019

Tutorial on Action Classification and Video Modeling https://actionclassification-videomodelling.github.io/

Action Recognition in Long Videos

Lorenzo Torresani

SCSampler: Sampling Salient Clips from Video for Efficient Action Recognition

Du Tran

Lorenzo Torresani

Preprint available at https://arxiv.org/abs/1904.04289

From clip-level to video-level prediction

• Many different scheme have been proposed:

From [Donahue et al., CVPR 2015]

From [Wang et al., CVPR 2016]

• Yet, most state-of-the-art action recognition models today simply average clip-level predictions (e.g., I3D, R(2+1)D, Non-Local nets)

Video level prediction

Benefits:

- simple
- effective in most scenarios

.. but averaging clip scores does not scale

• Real-world videos are several minutes long but often contain few salient segments

Average video length: 3 minutes and 48 seconds

[Karpathy et al., CVPR14]

Average video length: 5 minutes and 36 seconds Maximum video length: 1 hour and 34 minutes

- Problems:
 - computationally prohibitive for videos in the wild
 - irrelevant clips outnumber salient segments

Approach [Korbar, Tran and Torresani, arXiv 2019]

- Design a clip sampler to <u>efficiently</u> select the most salient clip of a video
- Run costly action classifier on this small subset of clips

Benefits:

• Improve both <u>efficiency</u> and <u>accuracy</u> of video-level classification by removing irrelevant clips from consideration

Salient Clip Sampler (SCSampler) Design

SCSampler requirements:

- Must have high precision
- Must be orders of magnitude faster than the action classifier

These requirements can be met by leveraging semantically-rich features that can be extracted without costly video decoding

Audio SCSampler

- Audio channel is separately encoded from the video
- Audio had been shown to be semantically correlated to the content in the video [Aytar et al., NIPS16; Arandjelovic and Zisserman, ICCV17; Owens and Efros, ECCV18; Gao et al., ECCV18]

 $s(\phi_A^{(i)})$

VGG applied to audio MEL-spectrogram [Chung and Zisserman, ACCVW16]

Figure from [Wu et al. CVPR18]

SCSampler on Compressed Video

• MPEG-4/H.264 video encodings:

every 12 frames

RGB-Residual (RGB-R) in 11 subsequent frames

- CNNs trained on IF/RGB-R/MD for action recognition were shown to achieve good accuracy [Wu et al., CVPR18]
- We adopted a lightweight SCSampler CNN (ResNet-18) trained on each individual modality (IF/RGB-R/MD)

action classes

SCSampler learning objectives

Two variants:

- Action Classification (AC) loss
 - 1. Train SCSampler as an action classifier $s_{AC}(\phi^{(i)}) \in [0,1]^{C}$ using cross-entropy loss
 - 2. At test time, compute SCSampler saliency score as $s(\phi^{(i)}) = \max_{c \in \{1,...,C\}} s_c^{AC}(\phi^{(i)})$
- Ranking (RANK) loss
 - ✓ Train SCSampler to rank higher clips that are <u>better</u> classified by action classifier $\mathbf{f}(v^{(i)})$

$$z^{(i,j)} = \begin{cases} 1 & \text{if} \quad f_{c^*}(v^{(i)}) > f_{c^*}(v^{(j)}) \\ -1 & \text{otherwise} \end{cases}$$
 ranking loss
$$\ell(\phi^{(i)}, \phi^{(j)}, z^{(i,j)}) = \max\left(0, -z^{(i,j)}[s(\phi^{(i)}) - s(\phi^{(j)}) + \eta]\right)$$

- Assessing design choices on miniSports (136K/133K training/testing subset of Sports1M)
- Clip-level action classifier $\mathbf{f}(v^{(i)})$ is MC3-18, a 3D CNN from [Tran et al, CVPR18]

Clip sampling method	accuracy (%)	runtime (min)
Random	59.51	15.1
Uniform	59.87	15.1
Dense	61.6	2293.5 (38.5 hrs)
Audio SCSampler	67.82	22.0
Visual SCSampler	73.05	20.9
Audio-Visual SCS - Joint Training	75.53	23.4

- Assessing design choices on miniSports (136K/133K training/testing subset of Sports1M)
- Clip-level action classifier $\mathbf{f}(v^{(i)})$ is MC3-18, a 3D CNN from [Tran et al, CVPR18]

Clip sampling method	accuracy (%)	runtime (min)
Random Uniform	59.51 59.87	15.1 15.1
Dense	61.6	2293.5 (38.5 hrs)
Audio SCSampler Visual SCSampler	67.82 73.05	22.0 20.9
Audio-Visual SCS - Joint Training	75.53	23.4

Audio SCSampler yields gain of 8% over Uniform

- Assessing design choices on miniSports (136K/133K training/testing subset of Sports1M)
- Clip-level action classifier $\mathbf{f}(v^{(i)})$ is MC3-18, a 3D CNN from [Tran et al, CVPR18]

Clip sampling method	accuracy (%)	runtime (min)
Random	59.51	15.1
Uniform	59.87	15.1
Dense	61.6	2293.5 (38.5 hrs)
Audio SCSampler	67.82	22.0
Visual SCSampler	73.05	20.9
Audio-Visual SCS - Joint Training	75.53	23.4

Audio SCSampler yields gain of more than 6% over dense prediction

- Assessing design choices on miniSports (136K/133K training/testing subset of Sports1M)
- Clip-level action classifier $f(v^{(i)})$ is MC3-18, a 3D CNN from [Tran et al, CVPR18]

Clip sampling method	accuracy (%)	runtime (min)
Random Uniform	59.51 59.87	15.1 15.1
Dense Audio SCSampler	61.6 67.82	2293.5 (38.5 hrs) 22.0
Visual SCSampler Audio-Visual SCS - Joint Training	73.05 75.53	$\begin{array}{c} 20.9 \\ \hline 23.4 \end{array}$

Visual SCSampler gives accuracy boost of 11.4% over dense prediction

Experimental evaluation

- Assessing design choices on miniSports (136K/133K training/testing subset of Sports1M)
- Clip-level action classifier $\mathbf{f}(v^{(i)})$ is MC3-18, a 3D CNN from [Tran et al, CVPR18]

Clip sampling method	accuracy (%)	runtime (min)	
Random Uniform Dense	59.51 59.87 61.6	15.1 15.1 2293.5 (38.5 hrs)	combining audio and visual information elevates the gain over dense prediction to 15%.
Audio SCSampler Visual SCSampler	$67.82 \\ 73.05$	22.0	
Audio-Visual SCS - Joint Training	(75.53)	23.4	

- Assessing design choices on miniSports (136K/133K training/testing subset of Sports1M)
- Clip-level action classifier $\mathbf{f}(v^{(i)})$ is MC3-18, a 3D CNN from [Tran et al, CVPR18]

Clip sampling method	accuracy (%)	runtime (min)	
Random Uniform Dense	59.51 59.87 61.6	15.1 15.1 (2293.5 (38.5 hrs))	combining audio and visual information elevates the gain over dense prediction to 15%!
Audio SCSampler Visual SCSampler	67.82 73.05	22.0 20.9	
Audio-Visual SCS - Joint Training	(75.53)	23.4	98x faster than dense evaluation

Large-scale experiment

• Evaluation on full Sports1M using state-of-the-art action classification models (currently, CSN-152 [2] has the best reported classification accuracy on Sports1M)

	SCSampler \mathcal{S} (K clips)		Uniform $(K \text{ clips})$		Dense (all clips)	
	acc. $(\%)$	runtime (day)	acc. (%)	runtime (day)	acc. $(\%)$	runtime (days)
R(2+1)D-34[1]	77.96	0.9	71.49	0.6	70.90	14.2
CSN-152 [2]	83.98	0.9	75.80	0.5	76.97	14.0

^[1] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at spatiotemporal convolutions for action recognition. In CVPR 2018.

^[2] D. Tran, H. Wang, L. Torresani, and M. Feiszli. Classification with channel-separated convolutional networks. arXiv preprint, 2019

Large-scale experiment

• Evaluation on full Sports1M using state-of-the-art action classification models (currently, CSN-152 [2] has the best reported classification accuracy on Sports1M)

	SCSampler \mathcal{S} (K clips)		Unifor	m (K clips)	Dense (all clips)	
	acc. $(\%)$	runtime (day)	acc. (%)	runtime (day)	acc. (%)	runtime (days)
R(2+1)D-34[1]	77.96	0.9	71.49	0.6	70.90	14.2
CSN-152 [2]	83.98	0.9	75.80	0.5	76.97	$\boxed{14.0}$

Video-level recognition accuracy on Sports 1M by averaging predictions over K=10 clips per video (except for Dense, which uses all clips)

SCSampler elevates the best reported accuracy on Sports1M by 7% while reducing by 15x the computational cost!

^[1] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at spatiotemporal convolutions for action recognition. In CVPR 2018.

^[2] D. Tran, H. Wang, L. Torresani, and M. Feiszli. Classification with channel-separated convolutional networks. arXiv preprint, 2019

Experiment on Kinetics

• Evaluation on Kinetics-400 using state-of-the-art action classification models

	SCSampler \mathcal{S} (K clips)		Uniform $(K \text{ clips})$		Dense (all clips)	
	acc. $(\%)$	runtime (hr)	acc. $(%)$	runtime (hr)	acc. (%)	runtime (hours)
R(2+1D)-34[1]	76.71	1.6	73.26	1.5	74.11	3.1
$\widetilde{\text{I3D-RGB}}$ [3]	75.12	1.5	71.18	1.3	72.75	2.9
CSN-152 [2]	80.23	1.6	77.53	1.5	78.81	3.0

Video-level recognition accuracy on Sports 1M by averaging predictions over K=10 clips per video (except for Dense, which uses all clips)

even though Kinetics videos are short (~10 seconds)
SCSampler provides a boost in accuracy
for all models, albeit small (1.4-2.4%)

- [1] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at spatiotemporal convolutions for action recognition. In CVPR 2018.
- [2] D. Tran, H. Wang, L. Torresani, and M. Feiszli. Classification with channel-separated convolutional networks. arXiv preprint, 2019.
- [3] J. Carreira and A. Zisserman. Quo vadis, action recognition? A new model and the kinetics dataset. In CVPR 2017.

Top-ranked and bottom-ranked clips

Top-3 clips sampled by SCSampler

Bottom-ranked clips by SCSampler

Dog agility video

Beach volley-ball video

