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Prior Work: Audio-Visual Correspondence

• Pretext task: 

✓ negative (frame, audio) pairs are sampled from different videos 

✓ network learns semantic correspondence

Still frame

Audio Clip

[Arandjelovic and Zisserman, ICCV 2017]:

semantically  
matching?

yes/no

( ), yes
violin playing



Learning Audio and Video Models  
from Self-Supervised Synchronization

in sync or 
out-of-sync ?Video Clip

Audio Clip

Audio-Visual  
Synchronization Model yes/no

• Pretext task forces the network to learn temporal (sound/
motion) representations useful for audio/video classification



Complexity of our pretext
• Controlled by choice of negatives 

✓ easy negatives: (video, audio) from distinct sequences 
 
 
 
 
 
→ can be recognized from different semantics, temporal analysis is not needed  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Can we learn general audio and video models from

self-supervised synchronization?

We formally call this task Audio-Visual Temporal Synchronization
(AVTS)

Prior work

Arandjelovic and Zisserman [1] introduced the task of audio-visual correspondence

Strengths:

• Achieves strong performance of audio features in audio scene classification

Weaknesses:

• Uses still images as input

• Learns semantic correspondence only

Our approach

• Our model uses video as visual input

• It is trained to recognize temporal synchronization rather than
semantic correspondence

Technical details

Architecture choice

• Separate audio and video subnetworks allow feature extraction and finetuning on

single modality

Loss Function

We train our system by minimizing the contrastive loss [4]:
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Negative selection

• "easy" negatives (audio and video come from di�erent samples)

• "hard" negatives (same sample, audio and video are non-overlapping)

• "super-hard" (same sample, audio and video are overlapping but still out of sync)

Curriculum learning

We found that progressively increasing the di�culty of the problem yields accuracy

gains on downstream tasks

Method Negative type Epochs Accuracy (%)

Single learning stage
easy 1 - 90 69.0

75% easy, 25% hard 1 - 90 58.9

hard 1 - 90 52.3

easy 1 - 50 67.2

Curriculum learning
(i.e., second learning stage applied after a first 75% easy, 25% hard 51 - 90 78.4
stage of 1-50 epochs with easy negatives only) hard 51 - 90 65.7

Experiments and results

AVTS as a pretraining scheme for action recognition

Video Network
Architecture

Pretraining
Dataset

Pretraining
Supervision UCF101 HMDB51

MC3 none n/a 69.1 43.9
MC3 Kinetics self-supervised 85.8 56.9
MC3 Audioset self-supervised 89.0 61.6
MC3 Kinetics fully supervised 90.5 66.8
RGB-I3D [3] Kinetics fully-supervised 95.1 74.3

AVTS features for audio scene classification

Method Auxiliary
dataset

Auxiliary
supervision

# auxiliary
examples

ESC-50
accuracy (%)

DCASE2014
accuracy (%)

Our audio subnet none none none 61.6 72
SoundNet [2] SoundNet self 2M+ 74.2 88
L3-Net [1] SoundNet self 2M+ 79.3 93
Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+ 82.3 94

State-of-the-art (RBM)[6] none none none 86.5 -

Multi-modal action recognition pretrained with AVTS

Comparison with concurrent work of Owens and Efros [5]

Model Accuracy (%)
Owens et al. (vision only) [5] 77.6
Ours (vision only) 85.8
Owens et al. (multisensory) [5] 82.1
Ours (multisensory) 87.0

• our late fusion enables the use of

individual subnetworks on single

modality; [5] uses early fusion, suitable

for mutlimodal analysis only

• our method achieves significant gains

by means of curriculum learning

Features of our approach

• Separate visual and audio streams enable the use of our subnetworks on

single modality (audio-only, video-only)

• Finetuning our AVTS video subnetwork for action recognition gives

significant accuracy gains over learning from scratch.

• For UCF101, our self-supervised pretraining on Audioset yields accuracy

gains nearly on-par with those produced by fully-supervised pretraining on

Kinetics.
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✓ hard negatives: (video, audio) sampled from same sequence but out-of-sync 
 
 
 
 
 
→ force the learning of temporal features



Architecture and learning objective
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MC3 3D CNN [Tran et al., CVPR 18]

video clip of 1 sec

VGG applied to MEL-spectrogram

audio clip of 1 seca(n)
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Can we learn general audio and video models from

self-supervised synchronization?

We formally call this task Audio-Visual Temporal Synchronization
(AVTS)

Prior work

Arandjelovic and Zisserman [1] introduced the task of audio-visual correspondence

Strengths:

• Achieves strong performance of audio features in audio scene classification

Weaknesses:

• Uses still images as input

• Learns semantic correspondence only

Our approach

• Our model uses video as visual input

• It is trained to recognize temporal synchronization rather than
semantic correspondence

Technical details

Architecture choice

• Separate audio and video subnetworks allow feature extraction and finetuning on

single modality

Loss Function

We train our system by minimizing the contrastive loss [4]:
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1 : if the examples are in sync

0 : otherwise

Negative selection

• "easy" negatives (audio and video come from di�erent samples)

• "hard" negatives (same sample, audio and video are non-overlapping)

• "super-hard" (same sample, audio and video are overlapping but still out of sync)

Curriculum learning

We found that progressively increasing the di�culty of the problem yields accuracy

gains on downstream tasks

Method Negative type Epochs Accuracy (%)

Single learning stage
easy 1 - 90 69.0

75% easy, 25% hard 1 - 90 58.9

hard 1 - 90 52.3

easy 1 - 50 67.2

Curriculum learning
(i.e., second learning stage applied after a first 75% easy, 25% hard 51 - 90 78.4
stage of 1-50 epochs with easy negatives only) hard 51 - 90 65.7

Experiments and results

AVTS as a pretraining scheme for action recognition

Video Network
Architecture

Pretraining
Dataset

Pretraining
Supervision UCF101 HMDB51

MC3 none n/a 69.1 43.9
MC3 Kinetics self-supervised 85.8 56.9
MC3 Audioset self-supervised 89.0 61.6
MC3 Kinetics fully supervised 90.5 66.8
RGB-I3D [3] Kinetics fully-supervised 95.1 74.3

AVTS features for audio scene classification

Method Auxiliary
dataset

Auxiliary
supervision

# auxiliary
examples

ESC-50
accuracy (%)

DCASE2014
accuracy (%)

Our audio subnet none none none 61.6 72
SoundNet [2] SoundNet self 2M+ 74.2 88
L3-Net [1] SoundNet self 2M+ 79.3 93
Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+ 82.3 94

State-of-the-art (RBM)[6] none none none 86.5 -

Multi-modal action recognition pretrained with AVTS

Comparison with concurrent work of Owens and Efros [5]

Model Accuracy (%)
Owens et al. (vision only) [5] 77.6
Ours (vision only) 85.8
Owens et al. (multisensory) [5] 82.1
Ours (multisensory) 87.0

• our late fusion enables the use of

individual subnetworks on single

modality; [5] uses early fusion, suitable

for mutlimodal analysis only

• our method achieves significant gains

by means of curriculum learning

Features of our approach

• Separate visual and audio streams enable the use of our subnetworks on

single modality (audio-only, video-only)

• Finetuning our AVTS video subnetwork for action recognition gives

significant accuracy gains over learning from scratch.

• For UCF101, our self-supervised pretraining on Audioset yields accuracy

gains nearly on-par with those produced by fully-supervised pretraining on

Kinetics.
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✓ Contrastive loss: 

Figure 1: Illustration of a positive example, a “hard” negative and “super-hard” negative. “Easy”
negative are not shown here: they involve taking audio samples and visual clips from different videos.
Easy negatives can be recognized merely based on semantic information, since two distinct videos
are likely to contain different scenes and objects. Our approach uses hard negatives (audio and
visual samples taken from different slices of the same video) to force the network to recognized
synchronization, as opposed to mere semantic correspondence.

as performance on our downstream tasks (audio classification and action recognition). Empirically,
we obtained the best results when fine-tuning with a negative set consisting of 25% hard negatives
and 75% easy negatives. For a preview of results see Table 1, which outlines the difference in
AVTS accuracy when training using curriculum learning as opposed to single-stage learning. Even
more remarkable are the performance improvements enabled by curriculum feature learning on the
downstream tasks of audio classification and action recognition (see Table 4).

2.5 Architecture Design

Figure 2: Our architecture design. The complete model for AVTS training can be viewed in (a). The
video subnetwork (shown in (b)) is a MCx network [19] using 3D convolutions in the early layers,
and 2D convolutions in the subsequent layers. The audio subnetwork (shown in (c)) is the VGG
model used by Chung and Zisserman [26].

As illustrated in Fig. 2(a), our network architecture is composed of two main parts: the audio
subnetwork and the video subnetwork, each taking its respective input. Our video subnetwork
(shown in Fig. 2(b)) is based on the mixed-convolution (MCx) family of architectures [19]. A MCx
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Evaluation on Kinetics dataset  
(230K training videos, action labels are not used): 
✓ training sets of varying difficulty (easy vs hard negatives) 
✓ test set includes easy negatives only
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• For UCF101, our self-supervised pretraining on Audioset yields accuracy

gains nearly on-par with those produced by fully-supervised pretraining on

Kinetics.

References

[1] Relja Arandjelovic and Andrew Zisserman, Look, listen and learn, IEEE ICCV, 2017.
[2] Yusuf Aytar, Carl Vondrick, and Antonio Torralba, Soundnet: Learning sound representations from unlabeled video,

NIPS, 2016, 2016.
[3] João Carreira and Andrew Zisserman, Quo vadis, action recognition? A new model and the kinetics dataset, 2017 IEEE

Conference on Computer Vision and Pattern Recognition, 2017.
[4] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov, Siamese neural networks for one-shot image recognition, ICML

Deep Learning Workshop, vol. 2, 2015.
[5] Andrew Owens and Alexei A. Efros, Audio-visual scene analysis with self-supervised multisensory features, ECCV, 2018.
[6] Hardik B Sailor, Dharmesh M Agrawal, and Hemant A Patil, Unsupervised filterbank learning using convolutional

restricted boltzmann machine for environmental sound classification, Proc. Interspeech 2017.

Accuracy on pretext task (in-sync vs out-of-sync)



Accuracy on pretext task (in-sync vs out-of-sync)

Cooperative Learning of Audio and Video

Models from Self-Supervised Synchronization

Bruno Korbar 1 Du Tran 2 Lorenzo Torresani 1

1Dartmouth College 2Facebook Research

Can we learn general audio and video models from

self-supervised synchronization?

We formally call this task Audio-Visual Temporal Synchronization
(AVTS)

Prior work

Arandjelovic and Zisserman [1] introduced the task of audio-visual correspondence

Strengths:

• Achieves strong performance of audio features in audio scene classification

Weaknesses:

• Uses still images as input

• Learns semantic correspondence only

Our approach

• Our model uses video as visual input

• It is trained to recognize temporal synchronization rather than
semantic correspondence

Technical details

Architecture choice

• Separate audio and video subnetworks allow feature extraction and finetuning on

single modality

Loss Function

We train our system by minimizing the contrastive loss [4]:
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Negative selection

• "easy" negatives (audio and video come from di�erent samples)

• "hard" negatives (same sample, audio and video are non-overlapping)

• "super-hard" (same sample, audio and video are overlapping but still out of sync)

Curriculum learning

We found that progressively increasing the di�culty of the problem yields accuracy

gains on downstream tasks

Method Negative type Epochs Accuracy (%)

Single learning stage
easy 1 - 90 69.0

75% easy, 25% hard 1 - 90 58.9

hard 1 - 90 52.3

easy 1 - 50 67.2

Curriculum learning
(i.e., second learning stage applied after a first 75% easy, 25% hard 51 - 90 78.4
stage of 1-50 epochs with easy negatives only) hard 51 - 90 65.7

Experiments and results

AVTS as a pretraining scheme for action recognition

Video Network
Architecture

Pretraining
Dataset

Pretraining
Supervision UCF101 HMDB51

MC3 none n/a 69.1 43.9
MC3 Kinetics self-supervised 85.8 56.9
MC3 Audioset self-supervised 89.0 61.6
MC3 Kinetics fully supervised 90.5 66.8
RGB-I3D [3] Kinetics fully-supervised 95.1 74.3

AVTS features for audio scene classification

Method Auxiliary
dataset

Auxiliary
supervision

# auxiliary
examples

ESC-50
accuracy (%)

DCASE2014
accuracy (%)

Our audio subnet none none none 61.6 72
SoundNet [2] SoundNet self 2M+ 74.2 88
L3-Net [1] SoundNet self 2M+ 79.3 93
Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+ 82.3 94

State-of-the-art (RBM)[6] none none none 86.5 -

Multi-modal action recognition pretrained with AVTS

Comparison with concurrent work of Owens and Efros [5]

Model Accuracy (%)
Owens et al. (vision only) [5] 77.6
Ours (vision only) 85.8
Owens et al. (multisensory) [5] 82.1
Ours (multisensory) 87.0

• our late fusion enables the use of

individual subnetworks on single

modality; [5] uses early fusion, suitable

for mutlimodal analysis only

• our method achieves significant gains

by means of curriculum learning

Features of our approach

• Separate visual and audio streams enable the use of our subnetworks on

single modality (audio-only, video-only)

• Finetuning our AVTS video subnetwork for action recognition gives

significant accuracy gains over learning from scratch.

• For UCF101, our self-supervised pretraining on Audioset yields accuracy

gains nearly on-par with those produced by fully-supervised pretraining on

Kinetics.
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Evaluation on Kinetics dataset  
(230K training videos, action labels are not used): 
✓ training sets of varying difficulty (easy vs hard negatives) 
✓ test set includes easy negatives only



Curriculum learning yields better models 
even for downstream tasks

Table 3: Evaluation of audio features learned with AVTS on two audio classification benchmarks:
ESC-50 and DCASE2014. "Our audio subnet" denotes our audio subnet directly trained on these
benchmarks. The superior performance of our AVTS features suggest the effectiveness of our
approach lies in the self-supervised learning procedure rather than in the net architecture.

Method Auxiliary
dataset

Auxiliary
supervision

# auxiliary
examples

ESC-50
accuracy (%)

DCASE2014
accuracy (%)

SVM-MFCC [29] none none none 39.6 -
Random Forest [29] none none none 44.3 -
Our audio subnet none none none 61.6 72
SoundNet [20] SoundNet self 2M+ 74.2 88
L3-Net [21] SoundNet self 2M+ 79.3 93

Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+ 82.3 94
Human performance [21] n/a n/a n/a 81.3 -
State-of-the-art (RBM)[31] none none none 86.5 -

3.6 Impact of curriculum learning on AVTS and downstream tasks

Table 4 presents results across the many tasks considered in this paper. These results highlight the
strong benefit of training AVTS with curriculum learning for both the AVTS task, as well as other
applications that use our features (audio classification) or finetune our models (action recognition).
We also include results achieved by L3-Net (the most similar competitor) across these tasks. For all
tasks, both AVTS and L3-Net are pretrained on Kinetics, except for the evaluations on ESC-50 and
DCASE2014 where Flickr-Soundnet [20] is used for pretraining.

For a fair comparison, on UCF101 and HMDB51 we fine-tune the L3-Net using all frames from the
training set, and evaluate it by using all frames from the test videos. This means that both L3-Net and
our network are pre-trained, fine-tuned, and tested on the same amount of data. The results in this
table show that AVTS yields consistently higher accuracy across all tasks.

Table 4: Impact of curriculum learning on AVTS and downstream tasks (audio classification and
action recognition). We include also the performance of L3-Net across all these tasks. Both L3-Net
and AVTS are pretrained, fine-tuned (when applicable) as well as tested on the same amount of data.
All numbers are accuracy measures (%).

Method AVTS-Kinetics ESC-50 DCASE HMDB51 UCF101

Our AVTS - single stage 69.8 70.6 89.2 46.4 77.1
Our AVTS - curriculum 78.4 82.3 94.1 56.9 85.8

L3-Net 74.3 79.3 93 40.2 72.3

4 Related work

Unsupervised learning has been studied for decades in both computer vision and machine learning.
Inspirational work in this area includes deep belief networks [33], stacked autoencoders [34], shift-
invariant decoders [35], sparse coding [36], TICA [37], stacked ISAs [38]. Instead of reconstructing
the original inputs as typically done in unsupervised learning, self-supervised learning methods try
to exploit free supervision from images or videos. Wang et al. [39] used tracklets of image patches
across video frames as self-supervision. Doersch et al. [40] exploited the spatial context of image
patches to pre-train a deep ConvNet. Fernando et al. [41] used temporal context for self-supervised
pre-training, while Misra et al. [42] proposed frame-shuffling as a self-supervised task.

Self-supervised learning can also be done across different modalities. Pre-trained visual classifiers
(noisy predictions) were used as supervision for pre-training audio models [20] as well as CNN
models with depth images as input [43]. Audio signals were also used to pre-train visual models [44].
Recently, Arandjelovic and Zisserman proposed the Audio-Visual Correspondence (AVC) – i.e.,

8

Audio-Video Semantic Correspondence [Arandjelovic and Zisserman, ICCV 2017]

pretext task  audio classification  video (action) 
classification

AVTS: Audio-Video Temporal Synchronization 
[Korbar et al., NeurIPS 2018]
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Can we learn general audio and video models from

self-supervised synchronization?

We formally call this task Audio-Visual Temporal Synchronization
(AVTS)

Prior work

Arandjelovic and Zisserman [1] introduced the task of audio-visual correspondence

Strengths:

• Achieves strong performance of audio features in audio scene classification

Weaknesses:

• Uses still images as input

• Learns semantic correspondence only

Our approach

• Our model uses video as visual input

• It is trained to recognize temporal synchronization rather than
semantic correspondence

Technical details

Architecture choice

• Separate audio and video subnetworks allow feature extraction and finetuning on

single modality

Loss Function

We train our system by minimizing the contrastive loss [4]:
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Negative selection

• "easy" negatives (audio and video come from di�erent samples)

• "hard" negatives (same sample, audio and video are non-overlapping)

• "super-hard" (same sample, audio and video are overlapping but still out of sync)

Curriculum learning

We found that progressively increasing the di�culty of the problem yields accuracy

gains on downstream tasks

Method Negative type Epochs Accuracy (%)

Single learning stage
easy 1 - 90 69.0

75% easy, 25% hard 1 - 90 58.9

hard 1 - 90 52.3

easy 1 - 50 67.2

Curriculum learning
(i.e., second learning stage applied after a first 75% easy, 25% hard 51 - 90 78.4
stage of 1-50 epochs with easy negatives only) hard 51 - 90 65.7

Experiments and results

AVTS as a pretraining scheme for action recognition

Video Network
Architecture

Pretraining
Dataset

Pretraining
Supervision UCF101 HMDB51

MC3 none n/a 69.1 43.9
MC3 Kinetics self-supervised 85.8 56.9
MC3 Audioset self-supervised 89.0 61.6
MC3 Kinetics fully supervised 90.5 66.8
RGB-I3D [3] Kinetics fully-supervised 95.1 74.3

AVTS features for audio scene classification

Method Auxiliary
dataset

Auxiliary
supervision

# auxiliary
examples

ESC-50
accuracy (%)

DCASE2014
accuracy (%)

Our audio subnet none none none 61.6 72
SoundNet [2] SoundNet self 2M+ 74.2 88
L3-Net [1] SoundNet self 2M+ 79.3 93
Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+ 82.3 94

State-of-the-art (RBM)[6] none none none 86.5 -

Multi-modal action recognition pretrained with AVTS

Comparison with concurrent work of Owens and Efros [5]

Model Accuracy (%)
Owens et al. (vision only) [5] 77.6
Ours (vision only) 85.8
Owens et al. (multisensory) [5] 82.1
Ours (multisensory) 87.0

• our late fusion enables the use of

individual subnetworks on single

modality; [5] uses early fusion, suitable

for mutlimodal analysis only

• our method achieves significant gains

by means of curriculum learning

Features of our approach

• Separate visual and audio streams enable the use of our subnetworks on

single modality (audio-only, video-only)

• Finetuning our AVTS video subnetwork for action recognition gives

significant accuracy gains over learning from scratch.

• For UCF101, our self-supervised pretraining on Audioset yields accuracy

gains nearly on-par with those produced by fully-supervised pretraining on

Kinetics.
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Can we learn general audio and video models from

self-supervised synchronization?

We formally call this task Audio-Visual Temporal Synchronization
(AVTS)

Prior work

Arandjelovic and Zisserman [1] introduced the task of audio-visual correspondence

Strengths:

• Achieves strong performance of audio features in audio scene classification

Weaknesses:

• Uses still images as input

• Learns semantic correspondence only

Our approach

• Our model uses video as visual input

• It is trained to recognize temporal synchronization rather than
semantic correspondence

Technical details

Architecture choice

• Separate audio and video subnetworks allow feature extraction and finetuning on

single modality

Loss Function

We train our system by minimizing the contrastive loss [4]:
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Negative selection

• "easy" negatives (audio and video come from di�erent samples)

• "hard" negatives (same sample, audio and video are non-overlapping)

• "super-hard" (same sample, audio and video are overlapping but still out of sync)

Curriculum learning

We found that progressively increasing the di�culty of the problem yields accuracy

gains on downstream tasks

Method Negative type Epochs Accuracy (%)

Single learning stage
easy 1 - 90 69.0

75% easy, 25% hard 1 - 90 58.9

hard 1 - 90 52.3

easy 1 - 50 67.2

Curriculum learning
(i.e., second learning stage applied after a first 75% easy, 25% hard 51 - 90 78.4
stage of 1-50 epochs with easy negatives only) hard 51 - 90 65.7

Experiments and results

AVTS as a pretraining scheme for action recognition

Video Network
Architecture

Pretraining
Dataset

Pretraining
Supervision UCF101 HMDB51

MC3 none n/a 69.1 43.9
MC3 Kinetics self-supervised 85.8 56.9
MC3 Audioset self-supervised 89.0 61.6
MC3 Kinetics fully supervised 90.5 66.8
RGB-I3D [3] Kinetics fully-supervised 95.1 74.3

AVTS features for audio scene classification

Method Auxiliary
dataset

Auxiliary
supervision

# auxiliary
examples

ESC-50
accuracy (%)

DCASE2014
accuracy (%)

Our audio subnet none none none 61.6 72
SoundNet [2] SoundNet self 2M+ 74.2 88
L3-Net [1] SoundNet self 2M+ 79.3 93
Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+ 82.3 94

State-of-the-art (RBM)[6] none none none 86.5 -

Multi-modal action recognition pretrained with AVTS

Comparison with concurrent work of Owens and Efros [5]

Model Accuracy (%)
Owens et al. (vision only) [5] 77.6
Ours (vision only) 85.8
Owens et al. (multisensory) [5] 82.1
Ours (multisensory) 87.0

• our late fusion enables the use of

individual subnetworks on single

modality; [5] uses early fusion, suitable

for mutlimodal analysis only

• our method achieves significant gains

by means of curriculum learning

Features of our approach

• Separate visual and audio streams enable the use of our subnetworks on

single modality (audio-only, video-only)

• Finetuning our AVTS video subnetwork for action recognition gives

significant accuracy gains over learning from scratch.

• For UCF101, our self-supervised pretraining on Audioset yields accuracy

gains nearly on-par with those produced by fully-supervised pretraining on

Kinetics.
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Can we learn general audio and video models from

self-supervised synchronization?

We formally call this task Audio-Visual Temporal Synchronization
(AVTS)

Prior work

Arandjelovic and Zisserman [1] introduced the task of audio-visual correspondence

Strengths:

• Achieves strong performance of audio features in audio scene classification

Weaknesses:

• Uses still images as input

• Learns semantic correspondence only

Our approach

• Our model uses video as visual input

• It is trained to recognize temporal synchronization rather than
semantic correspondence

Technical details

Architecture choice

• Separate audio and video subnetworks allow feature extraction and finetuning on

single modality

Loss Function

We train our system by minimizing the contrastive loss [4]:
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Negative selection

• "easy" negatives (audio and video come from di�erent samples)

• "hard" negatives (same sample, audio and video are non-overlapping)

• "super-hard" (same sample, audio and video are overlapping but still out of sync)

Curriculum learning

We found that progressively increasing the di�culty of the problem yields accuracy

gains on downstream tasks

Method Negative type Epochs Accuracy (%)

Single learning stage
easy 1 - 90 69.0

75% easy, 25% hard 1 - 90 58.9

hard 1 - 90 52.3

easy 1 - 50 67.2

Curriculum learning
(i.e., second learning stage applied after a first 75% easy, 25% hard 51 - 90 78.4
stage of 1-50 epochs with easy negatives only) hard 51 - 90 65.7

Experiments and results

AVTS as a pretraining scheme for action recognition

Video Network
Architecture

Pretraining
Dataset

Pretraining
Supervision UCF101 HMDB51

MC3 none n/a 69.1 43.9
MC3 Kinetics self-supervised 85.8 56.9
MC3 Audioset self-supervised 89.0 61.6
MC3 Kinetics fully supervised 90.5 66.8
RGB-I3D [3] Kinetics fully-supervised 95.1 74.3

AVTS features for audio scene classification

Method Auxiliary
dataset

Auxiliary
supervision

# auxiliary
examples

ESC-50
accuracy (%)

DCASE2014
accuracy (%)

Our audio subnet none none none 61.6 72
SoundNet [2] SoundNet self 2M+ 74.2 88
L3-Net [1] SoundNet self 2M+ 79.3 93
Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+ 82.3 94

State-of-the-art (RBM)[6] none none none 86.5 -

Multi-modal action recognition pretrained with AVTS

Comparison with concurrent work of Owens and Efros [5]

Model Accuracy (%)
Owens et al. (vision only) [5] 77.6
Ours (vision only) 85.8
Owens et al. (multisensory) [5] 82.1
Ours (multisensory) 87.0

• our late fusion enables the use of

individual subnetworks on single

modality; [5] uses early fusion, suitable

for mutlimodal analysis only

• our method achieves significant gains

by means of curriculum learning

Features of our approach

• Separate visual and audio streams enable the use of our subnetworks on

single modality (audio-only, video-only)

• Finetuning our AVTS video subnetwork for action recognition gives

significant accuracy gains over learning from scratch.

• For UCF101, our self-supervised pretraining on Audioset yields accuracy

gains nearly on-par with those produced by fully-supervised pretraining on

Kinetics.
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Audio-Visual Scene Analysis with  
Self-Supervised Multisensory Features  

[Owens and Efros, ECCV 2018]

Concurrent work showing the use of self-supervised audio/video synchronization features  
for several applications:2 Owens and Efros

“Cutting in kitchen”
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Predicted on-screen sound

(a) Sound localization (b) Action recognition (c) On/off-screen audio separation

Fig. 1: Applications. We use self-supervision to learn an audio-visual representation that: (a) can
be used to visualize the locations of sound sources in video; (b) is useful for visual and audio-
visual action recognition; (c) can be applied to the task of separating on- and off-screen sounds. In
(c), we demonstrate our source-separation model by visually masking each speaker and asking it
to predict the on-screen audio. The predicted sound contains only the voice of the visible speaker.
Please see our webpage for video results: http://andrewowens.com/multisensory.

and (c) on/off-screen sound source separation. Figure 1 shows examples of these appli-
cations. In Fig. 1(a), we visualize the sources of sound in a video using our network’s
learned attention map, i.e. the impact of an axe, the opening of a mouth, and moving
hands of a musician. In Fig. 1(b), we show an application of our learned features to
audio-visual action recognition, i.e. classifying a video of a chef chopping an onion.
In Fig. 1(c), we demonstrate our novel on/off-screen sound source separation model’s
ability to separate the speakers’ voices by visually masking them from the video.

The main contributions of this paper are: 1) learning a general video representation
that fuses audio and visual information; 2) evaluating the usefulness of this representa-
tion qualitatively (by sound source visualization) and quantitatively (on an action recog-
nition task); and 3) proposing a novel video-conditional source separation method that
uses our representation to separate on- and off-screen sounds, and is the first method to
work successfully on real-world video footage, e.g. television broadcasts. Our feature
representation, as well as code and models for all applications are available online.

2 Related work

Evidence from psychophysics While we often think of vision and hearing as being
distinct systems, in humans they are closely intertwined [4] through a process known
as multisensory integration. Perhaps the most compelling demonstration of this phe-
nomenon is the McGurk effect [5], an illusion in which visual motion of a mouth
changes one’s interpretation of a spoken sound1. Hearing can also influence vision:
the timing of a sound, for instance, affects whether we perceive two moving objects to
be colliding or overlapping [2]. Moreover, psychologists have suggested that humans

1 For a particularly vivid demonstration, please see: https://www.youtube.com/
watch?v=G-lN8vWm3m0 [6].
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Fig. 2: Fused audio-visual network. We train an early-fusion, multisensory network to predict
whether video frames and audio are temporally aligned. We include residual connections between
pairs of convolutions [53]. We represent the input as a T ⇥H ⇥W volume, and denote a stride
by “/2”. To generate misaligned samples, we synthetically shift the audio by a few seconds.

Before fusion, we apply a small number of 3D convolution and pooling operations
to the video stream, reducing its temporal sampling rate by a factor of 4. We also ap-
ply a series of strided 1D convolutions to the input waveform, until its sampling rate
matches that of the video network. We fuse the two subnetworks by concatenating their
activations channel-wise, after spatially tiling the audio activations. The fused network
then undergoes a series of 3D convolutions, followed by global average pooling [55].
We add residual connections between pairs of convolutions. We note that the network
architecture resembles ResNet-18 [53] but with the extra audio subnetwork, and 3D
convolutions instead of 2D ones (following work on inflated convolutions [56]).

Training We train our model with 4.2-sec. videos, randomly shifting the audio by
2.0 to 5.8 seconds. We train our model on a dataset of approximately 750,000 videos
randomly sampled from AudioSet [57]. We use full frame-rate videos (29.97 Hz), re-
sulting in 125 frames per example. We select random 224 ⇥ 224 crops from resized
256⇥ 256 video frames, apply random left-right flipping, and use 21 kHz stereo sound.
We sample these video clips from longer (10 sec.) videos. Optimization details can be
found in Section A1.

Task performance We found that the model obtained 59.9% accuracy on held-out
videos for its alignment task (chance = 50%). While at first glance this may seem low,
we note that in many videos the sounds occur off-screen [15]. Moreover, we found that
this task is also challenging for humans. To get a better understanding of human ability,
we showed 30 participants from Amazon Mechanical Turk 60 aligned/shifted video
pairs, and asked them to identify the one with out-of-sync sound. We gave them 15

✓ Early fusion 

✓ Audio subnet operating on raw waveform 

✓ Video subnet is similar to ResNet3D-18 

✓ Negative samples generated by shifting  
   the audio by a few seconds



Action recognition by finetuning  
on UCF101 [Owens and Efros, ECCV 2018]

8 Owens and Efros

Model Acc.
Multisensory (full) 82.1%
Multisensory (spectrogram) 81.1%
Multisensory (random pairing [16]) 78.7%
Multisensory (vision only) 77.6%
Multisensory (scratch) 68.1%
I3D-RGB (scratch) [56] 68.1%
O3N [19]* 60.3%
Purushwalkam et al. [61]* 55.4%
C3D [62,56]* 51.6%
Shuffle [17]* 50.9%
Wang et al. [63,61]* 41.5%
I3D-RGB + ImageNet [56] 84.2%
I3D-RGB + ImageNet + Kinetics [56] 94.5%

Table 1: Action recognition on UCF-101
(split 1). We compared methods pretrained
without labels (top), and with semantic
labels (bottom). Our model, trained both
with and without sound, significantly outper-
forms other self-supervised methods. Num-
bers annotated with “*” were obtained from
their corresponding publications; we re-
trained/evaluated the other models.

termines the alignment, and then conditionally sample Ix and Ax. Rather than comput-
ing mutual information between the two modalities (which requires a generative model
that self-supervised approaches do not have), we find the patch/sound that provides the
most information about the latent variable y, based on our learned model p(y | Ix, Ax).

Visualizations What actions does our network respond to? First, we asked which
space-time patches in our test set were most informative, according to Equation 2.
We show the top-ranked patches in Figure 3, with the class activation map displayed
as a heatmap and overlaid on its corresponding video frame. From this visualization,
we can see that the network is selective to faces and moving mouths. The strongest
responses that are not faces tend to be unusual but salient audio-visual stimuli (e.g.
two top-ranking videos contain strobe lights and music). For comparison, we show the
videos with the weakest response in Figure 4; these contain relatively few faces.

Next, we asked how the model responds to videos that do not contain speech, and
applied our method to the Kinetics-Sounds dataset [16] — a subset of Kinetics [58]
classes that tend to contain a distinctive sound. We show the examples with the highest
response for a variety of categories, after removing examples in which the response was
solely to a face (which appear in almost every category). We show results in Figure 5.

Finally, we asked how the model’s attention varies with motion. To study this, we
computed our CAM-based visualizations for videos, which we have included in the
supplementary video (we also show some hand-chosen examples in Figure 1(a)). These
results qualitatively suggest that the model’s attention varies with on-screen motion.
This is in contrast to single-frame methods models [50,52,16], which largely attend to
sound-making objects rather than actions.

5 Action recognition

We have seen through visualizations that our representation conveys information about
sound sources. We now ask whether it is useful for recognition tasks. To study this, we
fine-tuned our model for action recognition using the UCF-101 dataset [64], initializ-
ing the weights with those learned from our alignment task. We provide the results in
Table 1, and compare our model to other unsupervised learning and 3D CNN methods.
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Class activation map  
(Zhou et al. 2016)
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Learning and using the arrow of time
[Wei, Lim, Zisserman and Freeman , CVPR 2018]
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Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer
below1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level
reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn
and exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on
large-scale video datasets.

Abstract

We seek to understand the arrow of time in videos – what

makes videos look like they are playing forwards or back-

wards? Can we visualize the cues? Can the arrow of time

be a supervisory signal useful for activity analysis? To this

end, we build three large-scale video datasets and apply a

learning-based approach to these tasks.

To learn the arrow of time efficiently and reliably, we de-

sign a ConvNet suitable for extended temporal footprints

and for class activation visualization, and study the ef-

fect of artificial cues, such as cinematographic conven-

tions, on learning. Our trained model achieves state-of-the-

art performance on large-scale real-world video datasets.

Through cluster analysis and localization of important re-

gions for the prediction, we examine learned visual cues

that are consistent among many samples and show when

and where they occur. Lastly, we use the trained ConvNet

for two applications: self-supervision for action recogni-

tion, and video forensics – determining whether Hollywood

film clips have been deliberately reversed in time, often used

as special effects.

1. Introduction

We seek to learn to see the arrow of time – to tell whether
a video sequence is playing forwards or backwards. At a
small scale, the world is reversible–the fundamental physics
equations are symmetric in time. Yet at a macroscopic scale,
time is often irreversible and we can identify certain motion
patterns (e.g., water flows downward) to tell the direction
of time. But this task can be challenging: some motion
patterns seem too subtle for human to determine if they are
playing forwards or backwards, as illustrated in Figure 1.
For example, it is possible for the train to move in either
direction with acceleration or deceleration (Figure 1d).

Furthermore, we are interested in how the arrow of time
manifests itself visually. We ask: first, can we train a reli-
able arrow of time classifier from large-scale natural videos
while avoiding artificial cues (i.e. cues introduced during
video production, not from the visual world); second, what
does the model learn about the visual world in order to solve
this task; and, last, can we apply such learned commonsense
knowledge to other video analysis tasks?

1Forwards: (b), (c); backwards: (a), (d). Though in (d) the train can
move in either direction.
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Can you tell from these ordered frames if the video is played forward or backward?   

Forwards: (b), (c); backwards: (a), (d). Though in (d) the train can move in either direction 

✓ Is it possible to train a "arrow of time" classifier from large-scale natural videos while avoiding artificial cues? 
✓ What does the model learn about the visual world in order to solve this task? 
✓ Is it possible to apply such learned commonsense knowledge to other video analysis tasks?



Design of an "arrow of time" classifier
[Wei, Lim, Zisserman and Freeman , CVPR 2018]

✓ Optical flow as input to focus on temporal aspects in the video 

✓ Extended temporal span by concatenation of conv5 VGG features computed over T segments 
✓ Global average pooling layer (GAP) for better activation localization via Class Activation Map  
  (CAM) [Zhou et al., CVPR 2016]

Regarding the first question on classification, we go be-
yond previous work [14] to train a ConvNet, exploiting
thousands of hours of online videos, and let the data de-
termine which cues to use. Such cues can come from
high-level events (e.g., riding a horse), or low-level physics
(e.g., gravity). However, as discovered in previous self-
supervision work [4], ConvNet may learn artificial cues
from still images (e.g., chromatic aberration) instead of a
useful visual representation. Videos, as collections of im-
ages, have additional artificial cues introduced during cre-
ation (e.g. camera motion), compression (e.g. inter-frame

codec) or editing (e.g. black framing), which may be used
to indicate the video’s temporal direction. Thus, we design
controlled experiments to understand the effect of artificial
cues from videos on the arrow of time classification.

Regarding the second question on the interpretation of
learned features, we highlight the observation from Zhou
et al. [26]: in order to achieve a task (scene classification
in their case), a network implicitly learns what is necessary
(object detectors in their case). We expect that the network
will learn a useful representation of the visual world, in-
volving both low-level physics and high-level semantics, in
order to detect the forward direction of time.

Regarding the third question on applications, we use the
arrow-of-time classifier for two tasks: video representa-
tion learning and video forensics. For representation learn-
ing, recent works have used temporal ordering for self-
supervised training of an image ConvNet [6, 13]. Instead,
we focus on the motion cues in videos and use the arrow
of time to pre-train action recognition models. For video
forensics, we detect clips that are played backwards in Hol-
lywood films. This may be done as a special effect, or to
make an otherwise dangerous scene safe to film. We show
good performance on a newly collected dataset of films con-
taining time-reversed clips, and visualize the cues that the
network uses to make the classification. More generally,
this application illustrates that the trained network can de-
tect videos that have been tampered in this way. In both
applications we exceed the respective state of the art.

In the following, we first describe our ConvNet model
(Section 2), incorporating recent developments for human
action recognition and network interpretation. Then we
identify and address three potential confounds to learning
the arrow of time discovered by the ConvNet (Section 3),
for example, exploiting prototypical camera motions used
by directors. With the properly pre-processed data, we train
our model using two large video datasets (Section 4): a
147k clip subset of the Flickr100M dataset [22] and a 58k
clip subset of the Kinetics dataset [10]. We evaluate test
performance and visualize the representations learned to
solve the arrow-of-time task. Lastly, we demonstrate the
usefulness of our ConvNet arrow of time detector for self-
supervised pre-training in action recognition and for iden-
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Figure 2: Illustration of our Temporal Class-Activation-
Map Network (T-CAM) for the arrow of time classification.
Starting from the traditional VGG-16 architecture [18] for
image recognition, (a) we first concatenate the conv5 fea-
tures from the shared convolutional layers, (b) and then re-
place the fully-connected layer with three convolution lay-
ers and global average pooling layer (GAP) [11, 20, 21, 27]
for better activation localization.

tifying clip from Hollywood films made using the reverse-
motion film technique (Section 5).

1.1. Related Work

Several recent papers have explored the usage of the tem-
poral ordering of images. Basha et al. [1, 3] consider the
task of photo-sequencing – determining the temporal order
of a collection of images from different cameras. Others
have used the temporal ordering of frames as a supervisory
signal for learning an embedding [15], for self-supervision
training of a ConvNet [6, 13], and for construction of a rep-
resentation for action recognition [7].

However, none of these previous works address the task
of detecting the direction of time. Pickup et al.[14] ex-
plore three representations for determining time’s arrow
in videos: asymmetry in temporal behaviour (using hand-
crafted SIFT-like features), evidence for causality, and an
auto-regressive model to determine if a cause influences fu-
ture events. While their methods work on a small dataset
collected with known strong arrow of time signal, it is
unclear if the method works on generic large-scale video
dataset with different artificial signals. The study of the ar-
row of time is a special case of causal inference, which has
been connected to machine learning topics, such as transfer
learning and covariate shift adaptation [16].

In terms of ConvNet architectures, we borrow from re-
cent work that has designed ConvNets for action recogni-
tion in videos with optical flow input to explicitly capture
motion information [17, 24]. We also employ the Class Ac-
tivation Map (CAM) visualization of Zhou et al. [27].
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Avoid "cheating" [Wei, Lim, Zisserman and Freeman , CVPR 2018]

Deep networks can leverage artificial cues to solve the task

Black framing Consistent camera motion

Tilt down

2. ConvNet Architecture

To focus on the time-varying aspects of the video, we
only use optical flow as input to the ConvNet, and not its
RGB appearance. Below, we first motivate the architecture,
and then describe implementation details.
Model design. Our aim is to design a ConvNet that has
an extended temporal footprint, and that also enables the
learned features to be visualized. We also want the model
to have sufficient capacity to detect subtle temporal signals.
To this end, we base our model on three prior ConvNets:
the VGG-16 network [18] as the backbone for the initial
convolutional layers, for sufficient capacity; the temporal
chunking in the model of Feichtenhofer et al. [5] to give an
extended temporal footprint; and the CAM model of Zhou
et al. [27] to provide the visualization.

The resulting architecture is referred to as “Temporal
Class-Activation Map Network” (T-CAM) (Figure 2). For
the temporal feature fusion stage (Figure 2a), we first mod-
ify the VGG-16 network to accept a number of frames (e.g.
10) of optical flow as input by expanding the number of
channels of conv1 filters [24]. We use T such temporal
chunks, with a temporal stride of τ . The conv5 features
from each chunk are then concatenated. Then for the classi-
fication stage (Figure 2b), we follow the CAM model design
to replace fully-connected layers with three convolution lay-
ers and global average pooling (GAP) before the binary lo-
gistic regression. Batch-Normalization layers [9] are added
after each convolution layer.
Implementation details. To replace the fully-connected
layers from VGG-16, we use three convolution layers with
size 3×3×1024, stride 1×1 and pad 1×1 before the GAP
layer. For input, we use TV-L1 [25] to extract optical flow.

For all experiments in this paper, we split each dataset
70%-30% for training and testing respectively, and feed
both forward and backward versions of the video to the
model. The model is trained end-to-end from scratch, us-
ing fixed five-corner cropping and horizontal flipping for
data augmentation. Clips with very small motion signals
are filtered out from the training data using flow. Given a
video clip for test, in addition to the spatial augmentation,
we predict AoT on evenly sampled groups of frames for
temporal augmentation. The final AoT prediction for each
video is based on the majority vote of confident predictions
(i.e. score |x − 0.5| > 0.1), as some groups of frames may
be uninformative about AoT.
Verification on synthetic videos. Before testing on real
world videos which may have comfounding factors (e.g.
temporal codec, or cinematographer bias) to tell the time
direction, we first examine the effectiveness of our T-CAM
model on computer graphics videos where we have full con-
trol of the AoT signal. In the arXiv version of the paper,
we train models on three-cushion billiard game videos sim-
ulated with different physical parameters (e.g. friction co-
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Figure 3: Illustration of artificial signals from videos in
UCF101 dataset. (a) The black framing of the clip has
non-zero intensity value (left), and a vertical slice over
time displays an asymmetric temporal pattern (right). Af-
ter training, we cluster the learned last-layer feature of top-
confident test clips. We find some clusters have consistent
(b) tilt-down or (c) zoom-in camera motion. We show two
frames from two representative clips for each cluster.

efficient) by the physics engine in [8] with our extension
to handle multiple balls. Trained only with the AoT sig-
nal on the synthetic videos, our model can not only learn
video features to cluster test synthetic videos by their phys-
ical parameters, but also achieves 85% AoT classification
accuracy on a collection of real three-cushion tournament
videos (167 individual shots) from Youtube.

3. Avoiding Artificial Cues from Videos

A learning-based algorithm may “cheat” and solve the
arrow-of-time task using artificial cues, instead of learning
about the video content. In this section, we evaluate the ef-
fect of three artificial signals, black framing, camera motion
and inter-frame codec, on ConvNet learning and the effec-
tiveness of our data pre-procession to avoid them.

3.1. Datasets regarding artificial cues

We use the following two datasets to study artificial cues.

UCF101 [19]. To examine the black framing and cam-
era motion signal, we use this popular human action video
dataset (split-1). Through automatic algorithms (i.e. black
frame detection and homography estimation) and manual
pruning, we find that around 46% of the videos have black
framing, and 73% have significant camera motion (Table 1).

MJPEG Arrow of Time Dataset (MJPEG-AoT). To in-
vestigate the effect of inter-frame codec, we collect a new
video dataset containing 16.9k individual shots from 3.5k
videos from Vimeo2with diverse content. The collected

38054

2. ConvNet Architecture
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an extended temporal footprint, and that also enables the
learned features to be visualized. We also want the model
to have sufficient capacity to detect subtle temporal signals.
To this end, we base our model on three prior ConvNets:
the VGG-16 network [18] as the backbone for the initial
convolutional layers, for sufficient capacity; the temporal
chunking in the model of Feichtenhofer et al. [5] to give an
extended temporal footprint; and the CAM model of Zhou
et al. [27] to provide the visualization.

The resulting architecture is referred to as “Temporal
Class-Activation Map Network” (T-CAM) (Figure 2). For
the temporal feature fusion stage (Figure 2a), we first mod-
ify the VGG-16 network to accept a number of frames (e.g.
10) of optical flow as input by expanding the number of
channels of conv1 filters [24]. We use T such temporal
chunks, with a temporal stride of τ . The conv5 features
from each chunk are then concatenated. Then for the classi-
fication stage (Figure 2b), we follow the CAM model design
to replace fully-connected layers with three convolution lay-
ers and global average pooling (GAP) before the binary lo-
gistic regression. Batch-Normalization layers [9] are added
after each convolution layer.
Implementation details. To replace the fully-connected
layers from VGG-16, we use three convolution layers with
size 3×3×1024, stride 1×1 and pad 1×1 before the GAP
layer. For input, we use TV-L1 [25] to extract optical flow.

For all experiments in this paper, we split each dataset
70%-30% for training and testing respectively, and feed
both forward and backward versions of the video to the
model. The model is trained end-to-end from scratch, us-
ing fixed five-corner cropping and horizontal flipping for
data augmentation. Clips with very small motion signals
are filtered out from the training data using flow. Given a
video clip for test, in addition to the spatial augmentation,
we predict AoT on evenly sampled groups of frames for
temporal augmentation. The final AoT prediction for each
video is based on the majority vote of confident predictions
(i.e. score |x − 0.5| > 0.1), as some groups of frames may
be uninformative about AoT.
Verification on synthetic videos. Before testing on real
world videos which may have comfounding factors (e.g.
temporal codec, or cinematographer bias) to tell the time
direction, we first examine the effectiveness of our T-CAM
model on computer graphics videos where we have full con-
trol of the AoT signal. In the arXiv version of the paper,
we train models on three-cushion billiard game videos sim-
ulated with different physical parameters (e.g. friction co-
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Figure 3: Illustration of artificial signals from videos in
UCF101 dataset. (a) The black framing of the clip has
non-zero intensity value (left), and a vertical slice over
time displays an asymmetric temporal pattern (right). Af-
ter training, we cluster the learned last-layer feature of top-
confident test clips. We find some clusters have consistent
(b) tilt-down or (c) zoom-in camera motion. We show two
frames from two representative clips for each cluster.

efficient) by the physics engine in [8] with our extension
to handle multiple balls. Trained only with the AoT sig-
nal on the synthetic videos, our model can not only learn
video features to cluster test synthetic videos by their phys-
ical parameters, but also achieves 85% AoT classification
accuracy on a collection of real three-cushion tournament
videos (167 individual shots) from Youtube.

3. Avoiding Artificial Cues from Videos

A learning-based algorithm may “cheat” and solve the
arrow-of-time task using artificial cues, instead of learning
about the video content. In this section, we evaluate the ef-
fect of three artificial signals, black framing, camera motion
and inter-frame codec, on ConvNet learning and the effec-
tiveness of our data pre-procession to avoid them.

3.1. Datasets regarding artificial cues

We use the following two datasets to study artificial cues.

UCF101 [19]. To examine the black framing and cam-
era motion signal, we use this popular human action video
dataset (split-1). Through automatic algorithms (i.e. black
frame detection and homography estimation) and manual
pruning, we find that around 46% of the videos have black
framing, and 73% have significant camera motion (Table 1).

MJPEG Arrow of Time Dataset (MJPEG-AoT). To in-
vestigate the effect of inter-frame codec, we collect a new
video dataset containing 16.9k individual shots from 3.5k
videos from Vimeo2with diverse content. The collected
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2. ConvNet Architecture

To focus on the time-varying aspects of the video, we
only use optical flow as input to the ConvNet, and not its
RGB appearance. Below, we first motivate the architecture,
and then describe implementation details.
Model design. Our aim is to design a ConvNet that has
an extended temporal footprint, and that also enables the
learned features to be visualized. We also want the model
to have sufficient capacity to detect subtle temporal signals.
To this end, we base our model on three prior ConvNets:
the VGG-16 network [18] as the backbone for the initial
convolutional layers, for sufficient capacity; the temporal
chunking in the model of Feichtenhofer et al. [5] to give an
extended temporal footprint; and the CAM model of Zhou
et al. [27] to provide the visualization.

The resulting architecture is referred to as “Temporal
Class-Activation Map Network” (T-CAM) (Figure 2). For
the temporal feature fusion stage (Figure 2a), we first mod-
ify the VGG-16 network to accept a number of frames (e.g.
10) of optical flow as input by expanding the number of
channels of conv1 filters [24]. We use T such temporal
chunks, with a temporal stride of τ . The conv5 features
from each chunk are then concatenated. Then for the classi-
fication stage (Figure 2b), we follow the CAM model design
to replace fully-connected layers with three convolution lay-
ers and global average pooling (GAP) before the binary lo-
gistic regression. Batch-Normalization layers [9] are added
after each convolution layer.
Implementation details. To replace the fully-connected
layers from VGG-16, we use three convolution layers with
size 3×3×1024, stride 1×1 and pad 1×1 before the GAP
layer. For input, we use TV-L1 [25] to extract optical flow.

For all experiments in this paper, we split each dataset
70%-30% for training and testing respectively, and feed
both forward and backward versions of the video to the
model. The model is trained end-to-end from scratch, us-
ing fixed five-corner cropping and horizontal flipping for
data augmentation. Clips with very small motion signals
are filtered out from the training data using flow. Given a
video clip for test, in addition to the spatial augmentation,
we predict AoT on evenly sampled groups of frames for
temporal augmentation. The final AoT prediction for each
video is based on the majority vote of confident predictions
(i.e. score |x − 0.5| > 0.1), as some groups of frames may
be uninformative about AoT.
Verification on synthetic videos. Before testing on real
world videos which may have comfounding factors (e.g.
temporal codec, or cinematographer bias) to tell the time
direction, we first examine the effectiveness of our T-CAM
model on computer graphics videos where we have full con-
trol of the AoT signal. In the arXiv version of the paper,
we train models on three-cushion billiard game videos sim-
ulated with different physical parameters (e.g. friction co-
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Figure 3: Illustration of artificial signals from videos in
UCF101 dataset. (a) The black framing of the clip has
non-zero intensity value (left), and a vertical slice over
time displays an asymmetric temporal pattern (right). Af-
ter training, we cluster the learned last-layer feature of top-
confident test clips. We find some clusters have consistent
(b) tilt-down or (c) zoom-in camera motion. We show two
frames from two representative clips for each cluster.

efficient) by the physics engine in [8] with our extension
to handle multiple balls. Trained only with the AoT sig-
nal on the synthetic videos, our model can not only learn
video features to cluster test synthetic videos by their phys-
ical parameters, but also achieves 85% AoT classification
accuracy on a collection of real three-cushion tournament
videos (167 individual shots) from Youtube.

3. Avoiding Artificial Cues from Videos

A learning-based algorithm may “cheat” and solve the
arrow-of-time task using artificial cues, instead of learning
about the video content. In this section, we evaluate the ef-
fect of three artificial signals, black framing, camera motion
and inter-frame codec, on ConvNet learning and the effec-
tiveness of our data pre-procession to avoid them.

3.1. Datasets regarding artificial cues

We use the following two datasets to study artificial cues.

UCF101 [19]. To examine the black framing and cam-
era motion signal, we use this popular human action video
dataset (split-1). Through automatic algorithms (i.e. black
frame detection and homography estimation) and manual
pruning, we find that around 46% of the videos have black
framing, and 73% have significant camera motion (Table 1).

MJPEG Arrow of Time Dataset (MJPEG-AoT). To in-
vestigate the effect of inter-frame codec, we collect a new
video dataset containing 16.9k individual shots from 3.5k
videos from Vimeo2with diverse content. The collected
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[Wei, Lim, Zisserman and Freeman , CVPR 2018]

Deep networks can leverage artificial cues to solve the task

Black frame +Camera motion

Percent of videos 46% 73%

Acc.
before removal 98% 88%
after removal 90% 75%

Table 1: AoT classification results to explore the effect of
black framing and camera motion on UCF101 dataset. AoT
test accuracy drops around 10% after removing black fram-
ing and drops another 10% after removing camera motion.

videos are either uncompressed or encoded with intra-frame
codecs (e.g. MJPEG and ProRes) where each frame is
compressed independently without introducing temporal di-
rection bias. We can then evaluate performance with and
without inter-frame codecs by using the original frames or
the extracted frames after video compression with an inter-
frame codec (e.g. H.264). The details of the dataset are in
the arXiv version of the paper.

3.2. Experiments regarding artificial cues

We choose the T-CAM model to have two temporal seg-
ments and a total of 10 frames. More experimental details
are in the arXiv version of the paper.

Black framing. Black frame regions present at the bound-
ary may not be completely black after video compression
(Figure 3a). The resulting non-zero image intensities can
cause different flow patterns for forward and backward tem-
poral motion, providing an artificial cue for the AoT.

For control experiments, we train and test our model on
UCF101 before and after black framing removal, i.e., zero
out the intensity of black frame regions. The test accuracy
of the AoT prediction drops from 98% to 90% after the re-
moval. This shows that black frame regions provides artifi-
cial cues for AoT and should be removed.

Camera motion. To understand the visual cues learned
by our model after black framing removal, we perform K-
means (K=20) clustering on the extracted feature before the
logistic regression layer for the top-1K confidently classi-
fied test videos (foward or backward version). We esti-
mate the homography for each video’s camera motion with
RANSAC, and compute the average translation and zoom in
both horizontal and vertical directions. We find some video
clusters have consistently large vertical translation motion
(Figure 3b), and some have large zoom-in motion (Fig-
ure 3c). Such strong correlation among the confident clips
between their learned visual representation and the camera
motion suggests that cinematic camera motion conventions
can be used for AoT classification.

For control experiments, we use a subset of UCF101
videos that can be well-stabilized. The test accuracy of the
AoT prediction further drops from 88% to 75% before and

2http://vimeo.com

Train/Test Original H.264-F H.264-B

Original 59.1% 58.2% 58.6%

H.264-F 58.1% 58.9% 58.8%

H.264-B 58.3% 59.0% 58.8%

Table 2: AoT classification results to explore the effect of
the inter-frame codec on MJPEG-AoT dataset. We train
and test on three versions of the data: original (no temporal
encoding), encoded with H.264 in forward (H.264-F) and
backward (H.264-B) direction. Similar AoT test accuracy
suggests that the common H.264 codec doesn’t introduce
significant artificial signals for our model to learn from.

after stabilization. Thus, we need to stabilize videos to pre-
vent the model from using camera motion cues.

Inter-frame codec. For efficient storage, most online
videos are compressed with temporally-asymmetric video
codecs, e.g. H.264. They often employ “Forward predic-
tion”, which may offer an artificial signal for the direction
of time. As it is almost impossible to revert the codecs,
we train and test on our specially collected MJPEG-AoT
dataset, where videos are not subject to this artificial signal.

We first remove black framing from these videos and
choose individual shots that can be well-stabilized, based
on the discoveries above. Then we create different versions
of the downloaded MJPEG-AoT dataset (Original) by en-
coding the videos with the H.264 codec in either the for-
ward (H.264-F) or backward direction (H.264-B), to sim-
ulate the corruption from the inter-frame codec. In Ta-
ble 2 we show results where the model is trained on one
version of the MJPEG-AoT dataset and tested on another
version. Notably, our model has similar test accuracy, indi-
cating that our model can not distinguish videos from each
dataset for the AoT prediction. This finding offers a pro-
cedure for building a very large scale video dataset starting
from videos that have been H.264 encoded (e.g. Youtube
videos), without being concerned about artificial signals.

Conclusion. We have shown that black framing and cam-
era motion do allow our model to learn the artificial signals
for the AoT prediction, while the inter-frame codec (e.g.
H.264) does not introduce significant signals to be learned
by our model. For the experiments in the following sections
we remove black framing and stabilize camera motion to
pre-process videos for the AoT classification.

4. Learning the Arrow of Time

After verifying our T-CAM model on simulation videos
and removing the known artificial signals from real world
videos, we benchmark it on three real world video datasets
and examine the visual cues it learns to exploit for the AoT.
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Localization results [Wei, Lim, Zisserman and Freeman , CVPR 2018]
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Figure 4: Examples of T-CAM localization results on test clips from (a) Flickr-AoT and (b) Kinetics-AoT dataset. For each
input clip, we compute its class activation map (CAM) from the model trained on the same dataset. We show its middle
frame on the left, and overlay color-coded CAM (red for high probability of being forward, blue for backwards) and sparse
motion vector on regions with confident AoT classification. For each dataset, we show localization results for two high-
purity clusters (i.e., most clips have the same AoT label within the cluster) and one low-purity cluster. All the examples here
are played in the forward direction and AoT in regions with red CAM are correctly classified. Notice that examples from
low-purity clusters have a mix of red and blue regions.

show its middle frame and that with the heatmap and motion
vector overlay for regions with confident predictions.

For each large dataset, we show localization results for
three visual concepts from the cluster analysis. For each
cluster, we define its “purity” as the average of the clus-
ter samples’ AoT value. A high-purity cluster means that
its samples share the common feature that is indicative for
AoT prediction. For the Flickr-AoT dataset, the two high-
purity visual concepts (confident AoT prediction) corre-
spond to “human walk” and “water fall” (Figure 4a). For the
Kinetics-AoT dataset, the two AoT-confident action classes
are “crawling baby” and “shredding paper”, while the AoT-
unsure action class is “playing ukulele” (Figure 4b).

5. Using the Arrow of Time

In this section, we describe two applications of the ar-
row of time signal: self-supervised pre-training for action
recognition, and reverse film detection for video forensics.

5.1. Self-supervised pre-training

Initialization plays an important role in training neu-
ral networks for video recognition tasks. Self-supervised
pre-training has been used to initialize action classification
networks for UCF101, for example by employing a proxy
task such as frame order, that does not require external la-
bels [6, 12, 13]. For image input (i.e. the spatial stream),

these approaches show promising results that are better than
random initialization. However, their results are still far
from the performance obtained by pre-training on a super-
vised task such as ImageNet classification [17, 24]. Further,
there has been little self-supervision work on pre-training
for the flow input (the temporal stream). Below we first
show that the AoT signal can be used to pre-train flow-based
action recognition models to achieve state-of-the-art results
on UCF101 and HMDB51. Then to compare with previous
self-supervision methods, we explore the effects of different
input modalities and architectures on self-supervision with
the AoT signal for UCF101 split-1.

Results with T-CAM model. To benchmark on UCF101
split-1, we pre-train T-CAM models with three different
datasets and fine-tune each model with three different sets
of layers. For pre-training, we directly re-use the models
trained in the previous sections: one on UCF101 (on the
subset that can be stabilized with black framing removed)
from section 3, and also those trained on Flickr-AoT and
Kinetics-AoT. To fine-tune for action classification, we re-
place the logistic regression for AoT with classification lay-
ers (i.e., a fully-connected layer + softmax loss), and fine-
tune the T-CAM model with action labels. To understand
the effectiveness of the AoT features from the different lay-
ers, we fine-tune three sets of layers separately: the last
layer only, all layers after temporal fusion, and all layers.
To compare with Wang el al. [24], we redo the random and
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Finetuning for action classification
[Wei, Lim, Zisserman and Freeman , CVPR 2018]

Initialization
Fine-tune

Last layer After fusion All layers

Random
[24] - - 81.7%

T-CAM 38.0% 53.1% 79.3%

ImageNet
[24] - - 85.7%

T-CAM 47.9% 68.3% 84.1%

AoT

UCF101 58.6% 81.2% 86.3%
Flickr 57.2% 79.2% 84.1%

(ours) Kinetics 55.3% 74.3 % 79.4%

Table 5: Action classification on UCF101 split-1 with flow
input for different pre-training and fine-tuning methods. For
random and ImageNet initialization, our modified T-CAM
model achieves similar result to the previous state-of-the-
art [24] that uses a VGG-16 network. Self-supervised pre-
training of the T-CAM model using the arrow of time (AoT)
consistently outperforms random and ImageNet initializa-
tion, i.e. for all three datasets and for fine-tuning on three
different sets of levels.

UCF101
HMDB51

split1 split2 split3

ImageNet [24] 85.7% 88.2% 87.4% 55.0%

AoT (ours) 86.3% 88.6% 88.7% 55.4%

Table 6: Action classfication on UCF101 (3 splits) and
HMDB51 with flow input. We compare T-CAM models
pre-trained with AoT to VGG-16 models pre-trained with
ImageNet [24]. All models are pre-trained on the respective
action recognition data and fine-tuned for all layers.

ImageNet initialization with the T-CAM model instead of
the VGG-16 model, use 10 frames’ flow maps as input, and
only feed videos played in the original direction.

In Table 5, we compare self-supervision results for dif-
ferent initialization methods that use flow as input. First, it
can be seen from the random and ImageNet initializations,
that a VGG-16 model [24] has similar performance to the
T-CAM model when fine-tuned on all layers. Second, self-
supervised training of the T-CAM model with AoT on each
of the three datasets outperforms random and ImageNet ini-
tialization for fine-tuning tasks at all three different levels
of the architecture. Third, our AoT self-supervision method
exceed the state-of-the-art when pre-trained on UCF101.

To benchmark on UCF101 other splits and HMDB51
dataset, we choose the best setting from above, that is to
pre-train T-CAM model on the action recognition data and
fine-tune for all layers. As shown in Table 6, our AoT self-
supervision results outperform ImageNet pre-training [24]
by around 0.5% consistently.

Comparison with other input and architectures. To
further explore the effect of backbone architectures and

Model/Input Flow RGB D-RGB

VGG-16 86.3% 78.1% 85.8%

ResNet-50 87.2% 86.5% 86.9%

Table 7: Action classification on UCF101 split-1, using
AoT self-supervision but with other input and architectures.
We compare results using VGG-16 and ResNet-50 back-
bone architectures, and flow, RGB and D-RGB input.

Rand. Shuffle [13] Odd-One [6] AoT

RGB 38.6% 50.9% - 55.3%

D-RGB - - 60.3% 68.9%

Table 8: Action classification on UCF101 split-1, using
AlexNet architecture but different self-supervision meth-
ods. We compare our results pre-trained with AoT to previ-
ous self-supervision methods using RGB or D-RGB input.

modalites, we compare T-CAM with VGG-16 to ResNet-
50, and stacked frames of flow to those of RGB and RGB
difference (D-RGB) for action recognition on UCF101
split-1 dataset (Table 7). All models are pre-trained on
UCF101 split-1 with 20-frame input and fine-tuned with all
layers. To pre-train AoT with RGB and D-RGB input, we
modify the number of channels of conv1 filters correspond-
ingly. In terms of the backbone architecture, the ResNet-
50 models consistently outperform VGG-16 for each input
modality. In terms of the input modality, all three modal-
ities have similar performance for action recognition using
ResNet-50 with our AoT pre-training and also with Ima-
geNet pre-training as shown in Bilen et al. [2].
Comparison with other self-supervision methods. To
compare with previous self-supervision methods [6, 13]
that have used AlexNet as the backbone architecture and
fine-tuned with all layers, we include fine-tuning results
for models pre-trained using AoT on UCF101 split-1 for
AlexNet with RGB or D-RGB inputs. In Table 8, our AoT
results significantly outperform the prior art.

5.2. Video forensics: reverse film detection

Reverse action is a type of special effect in cinematog-
raphy where the action that is filmed ends up being shown
backwards on screen. Such techniques not only create artis-
tic scenes that are almost impossible to make in real life
(e.g. broken pieces coming back together), but also make
certain effects easier to realize in the reverse direction (e.g.
targeting a shot precisely). Humans can often detect such
techniques, as the motion in the video violates our temporal
structure prior of the world (e.g. the way people blink their
eyes or steam is emitted from an engine). For this video
forensics task, we tested the T-CAM model trained on the
Flickr-AoT and Kinetics-AoT datasets with 10 frames of
flow input, as some clips have fewer than 20 frames.
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✓ Results on UCF101:


