

Self-Supervised Learning Using the Time Axis

research

LONG BEACH CALIFORNIA June 16-20, 2019

Tutorial on Action Classification and Video Modeling

Lorenzo Torresani

facebook **Artificial Intelligence Research**

Cooperative Learning of Audio and Video Models from Self-Supervised Synchronization

Du Tran

.

...........

..........

* * * * * * * * * * * * * * * * * *

.

...........

.....

...........

.

.

.

Bruno Korbar

.

.....

.........

...........

.....

** ***********

.

.

..........

...........

...........

.

Lorenzo Torresani

Prior Work: Audio-Visual Correspondence

[Arandjelovic and Zisserman, ICCV 2017]:

Still frame

Audio Clip

- Pretext task:
 - negative (frame, audio) pairs are sampled from different videos \checkmark
 - network learns semantic correspondence \checkmark

facebook Artificial Intelligence Research

semantically matching?

yes/no

Learning Audio and Video Models

Audio Clip

Pretext task forces the network to learn temporal (sound/ motion) representations useful for audio/video classification

Complexity of our pretext

- Controlled by choice of negatives
 - easy negatives: (video, audio) from distinct sequences \checkmark

- → can be recognized from different semantics, temporal analysis is <u>not</u> needed
- hard negatives: (video, audio) sampled from same sequence but out-of-sync \checkmark

→ force the learning of temporal features

Architecture and learning objective

Contrastive loss:

$$E = \frac{1}{N} \sum_{n=1}^{N} (y^{(n)}) ||f_v(v^{(n)}) - f_a(a^{(n)})||_2 + (1 - y^{(n)}) \max(\eta - ||f_v(v^{(n)}) - f_a(a^{(n)})||_2, 0)^2$$

facebook Artificial Intelligence Research

 $y^{(n)} = \begin{cases} 1 : \text{ if the examples are in sync} \\ 0 : \text{ otherwise} \end{cases}$

Accuracy on pretext task (in-sync vs out-of-sync)

Evaluation on Kinetics dataset (230K training videos, action labels are not used):

- training sets of varying difficulty (easy vs hard negatives) test set includes easy negatives only

Method

Single learning stage

	Negative type	Epochs	Accuracy (%)
	easy	1 - 90	69.0
	75% easy, $25%$ hard	1 - 90	58.9
3	hard	1 - 90	52.3

Accuracy on pretext task (in-sync vs out-of-sync)

Evaluation on Kinetics dataset (230K training videos, action labels are not used):

- training sets of varying difficulty (easy vs hard negatives) test set includes easy negatives only

Method

Single learning stage

Curriculum learning

(i.e., second learning stage applied aft stage of 1-50 epochs with easy negative

	Negative type	Epochs	Accuracy (%)
	easy	1 - 90	69.0
C	75% easy, $25%$ hard	1 - 90	58.9
	hard	1 - 90	52.3
	easy	1 - 50	67.2
r S			
ter a first	75% easy, $25%$ hard	51 - 90	78.4
ves only)	hard	51 - 90	65.7

Curriculum learning yields better models even for downstream tasks

AVTS: Audio-Video Temporal Synchronization [Korba

ar et al., NeurIPS 2018]	pretext task	audio classification		video (action) classification	
Method	AVTS-Kinetics	ESC-50	DCASE	HMDB51	UCF101
Our AVTS - single stage Our AVTS - curriculum	69.8 78.4	70.6 82.3	89.2 94.1	46.4 56.9	77.1 85.8
L^3 -Net	74.3	79.3	93	40.2	72.3

Audio-Video Semantic Correspondence [Arandjelovic and Zisserman, ICCV 2017]

Audio-video synchronization as a pretraining scheme for action recognition

Video Network	Pretraining	Pretrai
Architecture	Dataset	Superv
MC3	none	n/a
MC3	Kinetics	self-sup
MC3	Audioset	self-sup
MC3	Kinetics	fully su

Audio-video synchronization as a pretraining scheme for action recognition

Video Network Architecture	Pretraining Dataset	Pretraining Supervision	UCF101	HMDB51	
MC3	none	n/a	69.1	43.9	
MC3	Kinetics	self-supervised	85.8	56.9	
MC3	Audioset	self-supervised	89.0	61.6	nearly on-pa
MC3	Kinetics	fully supervised	90.5	66.8	Intersection Fully-super pretraini

facebook Artificial Intelligence Research

ar with

Audio classification with AVTS features

Method	Auxiliary	Auxiliary	# auxiliary	ESC-50	DCASE2014
IVICUIUU	dataset	supervision	examples	accuracy (%)	accuracy (%)
Our audio subnet	none	none	none	61.6	72
SoundNet [2]	SoundNet	self	2M+	74.2	88
L^3 -Net [1]	SoundNet	self	2M+	79.3	93
Our AVTS features	Kinetics	self	230K	76.7	91
Our AVTS features	AudioSet	self	1.8M	80.6	93
Our AVTS features	SoundNet	self	2M+	82.3	94
					learning-from-s
					VS
					AVTS pretrai

Audio-Visual Scene Analysis with Self-Supervised Multisensory Features [Owens and Efros, ECCV 2018]

Concurrent work showing the use of self-supervised audio/video synchronization features for several applications:

"Cutting in kitchen"

(a) Sound localization

(b) Action recognition

(c) On/off-screen audio separation

Multisensory network design [Owens and Efros, ECCV 2018]

Video frames

oid	
je pool	
512 / [1,2,2]	
256 / [1,2,2]	
128 / [2,2,2]	
/, 128	
<i>ı</i> , 512	

- \checkmark Early fusion
- ✓ Audio subnet operating on raw waveform
- ✓ Video subnet is similar to ResNet3D-18
- ✓ Negative samples generated by shifting the audio by a few seconds

Action recognition by finetuning [Owens and Efros, ECCV 2018] on UCF101

Model

Multisensory (full) Multisensory (spectrogra Multisensory (random pa Multisensory (vision onl Multisensory (scratch) I3D-RGB (scratch) [56] O3N [19]* Purushwalkam et al. [61] C3D [62,56]* Shuffle [17]* Wang et al. [63,61]* I3D-RGB + ImageNet [I3D-RGB + ImageNet +

Acc.
82.1%
81.1%
78.7%
77.6%
68.1%
68.1%
60.3%
55.4%
51.6%
50.9%
41.5%
84.2%
94.5%

Action recognition by finetuning [Owens and Efros, ECCV 2018] on UCF101

Model

Multisensory (full) Multisensory (spectrogram) Multisensory (random pairing [16]) Multisensory (vision only) Multisensory (scratch) I3D-RGB (scratch) [56] O3N [19]* Purushwalkam et al. [61]* C3D [62,56]* Shuffle [17]* Wang et al. [63,61]* I3D-RGB + ImageNet [56]

Action recognition by finetuning [Owens and Efros, ECCV 2018] on UCF101

Model

Multisensory (full) Multisensory (spectrogram) Multisensory (random pairing [16]) Multisensory (vision only) Multisensory (scratch) I3D-RGB (scratch) [56] O3N [19]* Purushwalkam et al. [61]* C3D [62,56]* Shuffle [17]* Wang et al. [63,61]* I3D-RGB + ImageNet [56]

Action recognition by finetuning on UCF101

Model

Multisensory (full) Multisensory (spectrogram) Multisensory (random pairing [16]) Multisensory (vision only) Multisensory (scratch) I3D-RGB (scratch) [56] O3N [19]* Purushwalkam et al. [61]* C3D [62,56]* Shuffle [17]* Wang et al. [63,61]* I3D-RGB + ImageNet [56]

What does the network learn?

alione

<u>Aligned vs. misaligned</u>

Class activation map (Zhou et al. 2016)

Slide credit: A. Owens

Top responses per category (speech examples omitted)

top baller

Slide credit: A. Owens

Dribbling basketball

181 **MERBOOTCAMPCOM**

Slide credit: A. Owens

CELICEK FOR A Dribbling basketball

Dribbling basketball

all to and and

Slide credit: A. Owens

Playing organ

Playing organ

Playing organ

Chopping wood

Chopping wood

Chopping wood

Input video

Slide credit: A. Owens

1

OCBSN

On-screen prediction

Slide credit: A. Owens

OCBSN

Off-screen prediction

Slide credit: A. Owens

OCBSN

Learning and using the arrow of time [Wei, Lim, Zisserman and Freeman, CVPR 2018]

Can you tell from these ordered frames if the video is played forward or backward?

 \checkmark What does the model learn about the visual world in order to solve this task? ✓ Is it possible to apply such learned commonsense knowledge to other video analysis tasks?

- ✓ Is it possible to train a "arrow of time" classifier from large-scale natural videos while avoiding artificial cues?

Design of an "arrow of time" classifier

- ✓ Optical flow as input to focus on temporal aspects in the video
- ✓ Extended temporal span by concatenation of conv5 VGG features computed over T segments
- ✓ Global average pooling layer (GAP) for better activation localization via Class Activation Map (CAM) [Zhou et al., CVPR 2016]

[Wei, Lim, Zisserman and Freeman, CVPR 2018]

sion
$$\longrightarrow$$
 (b) Classification \rightarrow

Avoid "cheating"

Black framing

[Wei, Lim, Zisserman and Freeman, CVPR]

Tilt down

Zoom-in

Avoid "cheating"

Deep networks can leverage artificial cues to solve the task

		Black frame	+Camera motion
Percent of videos		46%	73%
Acc.	before removal	98%	88%
	after removal	90%	75%

[Wei, Lim, Zisserman and Freeman, CVPR 2018]

Localization results [Wei, Lim, Zisserman and Freeman, CVPR 2018]

Finetuning for action classification [Wei, Lim, Zisserman and Freeman, CVPR 2018]

✓ Results on UCF101:

Initialization		Fine-tune			
		Last layer	After fusion	All layers	
Dandom	[24]	_	—	81.7%	
Kandom	T-CAM	38.0%	53.1%	79.3%	
ImagaNat	[24]	_	_	85.7%	
Imagemet	T-CAM	47.9%	68.3%	84.1%	
	UCF101	58.6%	81.2%	86.3%	
AoT	Flickr	57.2%	79.2%	84.1%	
(ours)	Kinetics	55.3%	74.3 %	79.4%	

