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Prior Work: Audio-Visual Correspondence
[ Arandjelovic and Zisserman, ICCV 2017
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e Pretext task:

v negative (frame, audio) pairs are sampled from different videos

v network learns semantic correspondence

violin playing

) —>  yes
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L earning Audio and Video Models
from Self-Supervised Synchronization

IN sync or
out-of-sync ¢

\/ | d C ‘ |
P ¥ s ‘]
I e O I hl i "
Pl L ’.
- . - : [ v
i< ! Y " - . " - —
— r .~ X ! S | ——
= t l'l- ) 2
Y . 4 a J ” > ‘ -

P

Audio-Visual
Synchronization Model
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Audio Clip

e Pretext task forces the network to learn temporal (sound/
motion) representations useful for audio/video classification
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Complexity of our pretext

e Controlled by choice of negatives

v easy negatives: (video, audio) from distinct sequences

— can be recognized from different semantics, temporal analysis is not needed

v hard negatives: (video, audio) sampled from same sequence but out-of-sync

— force the learning of temporal features
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Architecture and learning objective

Input video
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v Contrastive loss:
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v(™) video clip of 1 sec

fu() MC33DCNN[Tranetal, CVPR 18]
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Accuracy on pretext task (in-sync vs out-of-sync)

Evaluation on Kinetics dataset

(230K training videos, action labels are not used):

v training sets of varying difficulty (easy vs hard negatives)
v test set includes easy negatives only

Method Negative type | Epochs| Accuracy (%)
easy 1 - 90 69.0
Single learning stage 75% easy, 25% hard| 1 - 90 58.9
hard 1 -90 H2.3
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Accuracy on pretext task (in-sync vs out-of-sync)
Evaluation on Kinetics dataset

(230K training videos, action labels are not used):

v training sets of varying difficulty (easy vs hard negatives)

v test set includes easy negatives only

Method Negative type | Epochs| Accuracy (%)
easy 1 - 90 69.0
Single learning stage 75% easy, 25% hard| 1 - 90 58.9
hard 1 - 90 H2.3
easy 1 -50 67.2

Curriculum learning

(i.e., second learning stage applied after a first| 75% easy, 25% hard| 51 - 90 78.4
stage of 1-50 epochs with easy negatives only) hard 51 - 90 65.7
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Curriculum learning yields better models
even for downstream tasks

AVTS: Audio-Video Temporal Synchronization

[Korbar et al,, NeurlPS 2018] oretext task audio classification video (action)
classification
\Method AVTS-Kinetics | ESC-50 DCASE | HMDB51 UCFI101
Our AVTS - single stage | 69.8 46.4 77.1
Our AVTS - curriculum | 78.4 56.9 85.8

L3-Net 743 | 79.3 | 40.2 723

Audio-Video Semantic Correspondence [Arandjelovic and Zisserman, ICCV 2017]
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Audio-video synchronization as a
pretraining scheme for action recognition

43.9  almost 20% better
B than learning

e Nk B Bt ucrio aogs
MC3 none n/a

MC3 Kinetics | self-supervised | 85.8 56.C
MC3 Audioset |self-supervised | (89.0 61.6
MC3 Kinetics | fully supervised| 90.5 66.8
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Audio-video synchronization as a
pretraining scheme for action recognition

Video Network Pretraining| Pretraining UCF101 HMDB51

Architecture | Dataset Supervision
MC3 none n/a 69.1 43.9
MC3 Kinetics | self-supervised | 85.8 56.9

MC3 Audioset | self-supervised | (89.0 $e3r|y on-par with
MC3 Kinetics | fully supervised _ f”g{est‘r‘.;irixged
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Audio classification with AVTS features

Auxiliary Auxiliary  # auxiliary ESC-50 DCASE2014
Method ..

dataset  supervision examples accuracy (%) accuracy (%)
Our audio subnet none none none
SoundNet (2] SoundNet self 2M+ 74.2 88
L°-Net [1] SoundNet self 2M+ 79.3 93
Our AVTS features Kinetics  self 230K 76.7 91
Our AVTS features AudioSet self 1.8M 80.6 93
Our AVTS features SoundNet self 2M+- @
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Audio-Visual Scene Analysis with
Self-Supervised Multisensory Features

[Owens and Efros, ECCV 2018]

Concurrent work showing the use of self-supervised audio/video synchronization features
for several applications:

Predicted on-screen sound
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(a) Sound localization (b) Action recognition  (c¢) On/off-screen audio separation



Multisensory network design towensandesos, eccvaoe;

v Early fusion

[ fc & sigmoid ]
global avérage poo v Audio subnet operating on raw waveform
[ [3x3x3conv] x 4,512 /[1,22]
T o8 ool = 4. 256 (T2 v Video subnet is similar to ResNet3D-18
[ [3x3x3 « 4128 [[2.2.2] | : e
5 conv] 228 v Negative samples generated by shifting
1x1x1 conyv, 128 ) .
T ez the audio by a few seconds
tile & Cor?c:atenate
- 3
[ [3x3x3conv]x 4,64/[222] | § 3x1x1 conv, 128 )
pooIT/ [1,2,2] pog)l /3
[ 5x7x7conv,64/[222] ) [ [5xIx1convlx 2, 256 /4 |
(| [5xixiconvix 2, 128 /4 |
(| [5xixiconvix2, 128 /4 |
po€)|/4 @3,
§ 65x1x1 conv, 64 / 4 )

Video frames Waveform



Action recognition by finetuning

on UCF10T

Model Acc.

Multisensory (full) 32.1%
Multisensory (spectrogram) 31.1%
Multisensory (random pairing [ | 6]) 78.7%
Multisensory (vision only) 77.6%
Multisensory (scratch) 68.1%
[3D-RGB (scratch) [56] 68.1%
O3N [19]* 60.3%
Purushwalkam et al. [61]* 55.4%
C3D [62,56]* 51.6%
Shuffle [17]* 50.9%
Wang et al. [63,61]* 41.5%
I3D-RGB + ImageNet [56] 84.2%
I3D-RGB + ImageNet + Kinetics [50] 94.5%

[Owens and Efros, ECCV 2018]



Action recognition by finetuning

on UCF10T

Model

[Owens and Efros, ECCV 2018]

A

Multisensory (full)

Multisensory (spectrogram) SI.T% \ t
Multisensory (random pairing [ 16]) 78.7% / from scratchl
Multisensory (vision only) 7L 6%

Multisensory (scratch)

I3D-RGB (scratch) [56] 68 1%

O3N [19]* 60.3%

Purushwalkam et al. [61]* 55.4%

C3D [62,56]* 531.6%

Shuffle [17/]* 50.9%

Wang et al. [63,61]* 41.5%

I3D-RGB + ImageNet [56] 84.2%

I3D-RGB + ImageNet + Kinetics [50] 94.5%

14% better
han learning



Action recognition by finetuning

on UCF10T

Model

A

Multisensory (full)
Multisensory (spectrogram)

Multisensory (random pairing [ | 6]) 718.7%
Multisensory (vision only) @
Multisensory (scratch) 08 1%
[3D-RGB (scratch) [56] 68.1%
O3N [19]* 60.3%
Purushwalkam et al. [61]* 55.4%
C3D [62,56]* 51.6%
Shuffle [17]* 50.9%
Wang et al. [63,61]* 41.5%
I3D-RGB + ImageNet [56] 84.2%
I3D-RGB + ImageNet + Kinetics [50] 94.5%

[Owens and Efros, ECCV 2018]

82.1% o
1% __——, audio increases

than 5%



Action recognition by finetuning
On UCF" O" [Owens and Efros, ECCV 2018]

comparison of

Model b t .

Multisensory (full) ObJeC I.V ES:

Multisensory (spectrogram) oY nchronization
y (Sp g

Multisensory (random pairing [ 1 6]) VS ,

Multisensory (vision only) . semantic

Multisensory (scratch) 63.1% Correspondence

[3D-RGB (scratch) [56] 68.1%

O3N [19]* 60.3%

Purushwalkam et al. [61]* 55.4%

C3D [62,50]* 51.6%

Shuffle [17/]* 50.9%

Wang et al. [63,61]* 41.5%

I3D-RGB + ImageNet [56] 84.2%

I3D-RGB + ImageNet + Kinetics [50] 94.5%



What does the network learn?

Aligned vs. misaligned

B BaC Class activation map
e, SOl (ZhOLI Et al. 2016)
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Slide credit: A. Owens




for Writing'an Opinion SR JESSEM Cleor-Cot Table Saw Stock
o0, —shonkd of [

TheBall |7« =
LR

Brizon

. /|
NROI -~ & W
o:‘&fﬁ{doois.c‘om

.

' ‘|UIAI]I i
TN
g gl

Design & Price [&%







\@m@}zm&
LLERBOOTCAMPICON RS




Slide credit: A. Owens



Slide cre



0
LIS

b N+

\\'

\ 4

Slide credit: A. Owens



ide credis A.owens | SN




\ 4
Chopping wood

v B B




Slide credi




Slide credit: A. Owens




A

de credit:



ide credit: A.




ide credit: A.




Learning and using the arrow of time

[ Wei, Lim, Zisserman and Freeman , CVPR 2018]

Can you tell from these ordered frames if the video is played forward or backward?

v IS

v W
v Is

nat does the model learn about the vi

it possible to app

y such learned com

t possible to train a “arrow of time” class

Sud

ifier f

WOr

di

monsense k

-om large-scale

n order to so

natural videos while avoiding artificial cues?
ve this task?

nowledge to other video analysis tasks?

Forwards: (b), (c); backwards: (a), (d). Though in (d) the train can move in either direction



Design of an “arrow of time” classifier

[ Wei, Lim, Zisserman and Freeman , CVPR 2018]

(T groups) Concat. Arrow
. g o Time
tT Conv. GAP .
+Logistic
Class Ac- tivation Map

Conv.

-

Input flow

'«—— (a) Late Temporal Fusion —»!<«— (b) Classification —,

v Optical flow as input to focus on temporal aspects in the video

v Extended temporal span by concatenation of conv5 VGG features computed over T segments

v Global average pooling layer (GAP) for better activation localization via Class Activation Map
(CAM) [Zhou et al., CVPR 2016 ]



AVO I d //C h e at I n g” [ Wei, Lim, Zisserman and Freeman , CVPR 2018]

Deep networks can leverage artificial cues to solve the task

Black framing Consistent camera motion

intensity
S Tilt down

vertical line

/0o0m-in \




Avoid “cheating”

Deep networks can leverage artificial cues to solve the task

[ Wei, Lim, Zisserman and Freeman , CVPR 2018}

Black frame

+Camera motion

Percent of videos 46 % 73%
A before removal 08% 88 %
- after removal 90% 75%




I_O Cal IZat | O n re S u |tS [ Wei, Lim, Zisserman and Freeman , CVPR 2018}
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(a) Clusters 1n Flickr-AoT (b) Action classes 1n Kinetics-AoT



Finetuning for action classification

| Wei, Lim, Zisserman and Freeman , CVPR 2018]

v Results on UCF101:

Initialization Fine-tune
Last layer | After fusion | All layers

Random ) ] ] o1.7%
T-CAM 38.0% 53.1% 79.3%

ImageNet o] i i 6. 77
T-CAM 47.9% 68.3% 84.1%

UCF101 58.6% 31.2 % 36.3%

AoT Flickr 57.2% 79.2% 84.1%
(ours) Kinetics 55.3% 74.3 % 79.4%




