Transferring from Kinetics

João Carreira

Tutorial on Action Classification and Video Modelling CVPR 2019 16th of June

Brief Recent History of Image Understanding

Caltech 101 (10k images): - classification 2001-2012

PASCAL VOC (10k images): - object localization

Simple features

Problems studied in isolation

Brief Recent History of Image Understanding

ImageNet (1M images): - classification

2012-now

PASCAL VOC / COCO: - object localization

Deep learning

Transfer learning

Finetuning ImageNet models on other classification datasets (2013)

DeCAF: A Deep Convolutional Activation Feature Google DeepMfor Generic Visual Recognition (Donahue et al)

Brief Recent History of Video Understanding

UCF 101 (10k videos) / HMDB-51 (5k videos): - classification

2012-2016 ActivityNet, Thumos, UCF101-Det: - Action localization

Problems studied in isolation

Transfer from ImageNet

Transferring from ImageNet to Video

UCF-101

HMDB-51

Compilation of results from actionrecognition.net

Ideal: learn representations directly from videos

Capture motion

Gunnar Johannson, video from 1971

Ideal: learn representations directly from videos

Image architectures wasteful for processing high-frame rate video

Deep learning on videos

Kinetics-400 (300k videos) - classification

2017

ActivityNet, Charades, AVA - Action localization

Deep learning video models on Kinetics-400

Transfer from Kinetics-400

1. The Kinetics dataset

archery

country line dancing riding or walking with horse play

playing violin

eating watermelon

Kinetics-400 (2017)

ImageNet Kinetics Object classification Human action classification (10s clips)

ImageNet Kinetics 1000 object classes x 1000 images 400 human action classes x >400 videos (300k total, ~all from unique videos)

ImageNet Kinetics Images from google searches Videos from youtube searches

Previous human action classification datasets too tiny to properly research new video representations

Dataset	Year	Actions	Clips	Total	Videos
HMDB-51 [15]	2011	51	min 102	6,766	3,312
UCF-101 [20]	2012	101	min 101	13,320	2,500
ActivityNet-200 [3]	2015	200	avg 141	28,108	19,994
Kinetics	2017	400	min 400	306,245	306,245

Dataset Collection

0 abseiling

1 laughing

2 swimming

3 shearing sheep 4 motorcycling

5 celebrating

6 spray painting

7 playing tennis

8 driving tractor

9 washing dishes

10 skateboarding

11 waxing legs

Title matching

How to make healthy eating unbelievably easy | Luke TEDx Talks

Image Classifiers

Human verification using Mechanical Turk

Evaluating Actions in Videos

Does this video clip contain the Lauman action playing drums?

Instructions

Combine, split, and filter classes

Person Actions (Singular)

e.g. waving, blinking, running, jumping

Person-Person Actions

e.g. hugging, kissing, shaking hands

Person-Object Actions

e.g. opening door, mowing lawn, washing dishes

Person Actions (Singular)

Person Actions (Singular)

Person-person actions

Making People Feel Welcome on University of Michigan's North Campus

Person-object actions

Person-object actions

Person-object actions

DeepMind Shows AI Has Trouble Seeing Homer Simpson's Actions

f 🗾 Y 🥶 🖾 👳

By Jeremy Hsu Posted 8 Jun 2017 | 14:00 GMT

Image: FOX/Getty Images

The best artificial intelligence still has trouble visually recognizing people performing many of Homer Simpson's favorite behaviors such as drinking beer, eating chips, eating doughnuts, yawning, and the occasional face-plant. Those findings from DeepMind, the pioneering London-based AI lab, also suggest the motive behind why DeepMind has created a huge new dataset of YouTube clips to help train AI on identifying human actions in videos that go well beyond "Mmm, doughnuts" or "Doh!"

The most popular AI used by Google, Facebook, Amazon, and other companies beyond Silicon Valley is based on deep learning algorithms that can learn to identify patterns in huge amounts of data. Over time, such

Technology | Innovation

Homer Simpson defeats Google's all-powerful DeepMind artificial intelligence

Super computer not smart enough to visually recognise many of Homer's signature actions.

By Mary-Ann Russon June 12, 2017 11:29 BST

Google DeepMind computer scientists say artificial intelligence is still struggling to comprehend common Homer Simpson actions like drinking beer and eating donuts (20th Century Fox)

D'oh! You'd never believe it, but in a new research paper, computer scientists at Google DeepMind have admitted that its artificial intelligence technology still struggles to identify many common human behaviours that Homer Simpson exhibits - whether it's eating doughnuts or crisps, falling on his face, yawning or drinking beer.

Kinetics has kept growing

	Dataset	Year	Actions	Clips	Total	Videos
	HMDB-51 [15]	2011	51	min 102	6,766	3,312
	UCF-101 [20]	2012	101	min 101	13,320	2,500
A	ctivityNet-200 [3]	2015	200	avg 141	28,108	19,994
	Kinetics	2017	400	min 400	306,245	306,245
	Kinetics-600	2018	600	min 450	500,000	500,000

Kinetics-700 2019 700 min 450 650,000 650,000

Kinetics has kept growing

Looking in Mirror

Shoot dance

Other candidates to fill in for ImageNet for action recognition

- Sports-1M: 478 sports classes
- Something-Something: 174 classes, scripted
- Moments in Time: 339 "verb" classes (not just human)
- HACS: 200 classes + positive/negative samples

2. Transferring from Kinetics

Kinetics-400 (300k videos) - classification

2017

ActivityNet, Charades, AVA - Action localization

Deep learning video models on Kinetics-400

Transfer from Kinetics-400

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

Comparison of models

Method	#D	Tr	aining	Testing		
	#Params	# Input Frames	Temporal Footprint	# Input Frames	Temporal Footprint	
ConvNet+LSTM	9M	25 rgb	5s	50 rgb	10s	
3D-ConvNet (C:	3D) 79M	16 rgb	0.64s	240 rgb	9.6s	
Two-Stream	12M	1 rgb, 10 flow	0.4s	25 rgb, 250 flow	10s	
3D-Fused	39M	5 rgb, 50 flow	2s	25 rgb, 250 flow	10s	
Two-Stream I3D	25M	64 rgb, 64 flow	2.56s	250 rgb, 250 flow	10s	

Table 1. Number of parameters and temporal input sizes of the models.

Video-specific representations considered: 3D ConvNets

Example architecture: C3D

Learning Spatiotemporal Features with 3D Convolutional Networks. Tran et al, CVPR 2015

Conv1a	Conv2a	Conv3a	Conv3b ြု	Conv4a	Conv4b	Conv5a	Conv5b	<u>भ</u> fc6	fc7
64 ⁸	128	⁸ 256	256 ⁸	512	Conv4b 512	512	512	⁸ 4096	4096 ^t

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer. All 3D convolution kernels are $3 \times 3 \times 3$ with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box. The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are $2 \times 2 \times 2$, except for pool1 is $1 \times 2 \times 2$. Each fully connected layer has 4096 output units.

Video-specific representations considered: 3D ConvNets

Example architecture: C3D

Pure video model, that learns a hierarchical representation directly over video

The catch back then: performance was lower than twostream networks. (e.g. UCF101):

C3D (1 net) + linear SVM	82.3
C3D (3 nets) + linear SVM	85.2
Two-stream networks [36]	88.0

Google's Inception-V1 ImageNet classifier

Going deeper with convolutions, Szegedy et al, CVPR 2015

Inflated 3D Inception (I3D)

I3D Conv1 filters, trained in Kinetics

RGB

Transfer results with miniKinetics pre-training (80k videos)

	UCF-101				HMDB-51			
Architecture	Original	Fixed	Full-FT	Δ	Original	Fixed	Full-FT	Δ
(a) LSTM	81.0	81.6	82.1	-6%	36.0	46.6	46.4	-16.7%
(b) 3D-ConvNet (C3D) 49.2	76.0	79.9	-60.5%	24.3	47.5	49.4	-33.1%
(c) Two-Stream	91.2	90.3	91.5	-3.4%	58.3	64.0	58.7	-13.7%
(d) 3D-Fused	89.3	88.5	90.1	-7.5%	56.8	59.0	61.4	-10.6%
(e) Two-Stream I3D	93.4	95. 7	96.5	-47.0%	66.4	74.3	75.9	-28.3%

Table 3. Performance on the UCF-101 and HMDB-51 test sets (splits 1 of both) for architectures pre-trained on miniKinetics. All except 3D-ConvNet are based on Inception-v1 and start off pre-trained on ImageNet. Original: train on UCF-101 / HMDB-51; Fixed: features from miniKinetics, with the last layer trained on UCF-101 / HMDB-51; Full-FT: miniKinetics pre-training with end-to-end fine-tuning on UCF-101 / HMDB-51; Δ shows the difference in misclassification as percentage between Original and the best of Full-FT and Fixed.

Comparison with state-of-the-art

Comparison with state-of-the-art

Comparison with state-of-the-art

Performance as function of # Kinetics examples

I3D-Kinetics-400 transfer performance (two stream, flow+rgb)

UCF-101

HMDB-51

Kinetics pre-training, comparison with state-of-the-art (compilation of results from actionrecognition.net)

Charades challenge winning entry at CVPR 2017

Action Recognition Results

Rank	Team	Accuracy (mAP)	Modeling Approach
1	TeamKinetics	0.3441	I3D ConvNet with dense per-frame outputs
2	DR/OBU	0.2974	Two parallel convolutional neural networks (CNNs) extracting static (i.e., independent) appearance and optical flow features and scores for each frame, plus, there is another parallel audio feature extraction stream using Soundnet CNN, which is scored using a SVM.
3	UMICH-VL	0.2811	We build an ensemble of Temporal Hourglass Networks (THGs), a novel architecture which consists of temporal convolutional layers, applied to several types of frame-wise feature vectors.

CVPR 2017

Temporal Segmentation Results

Rank	Team	Accuracy (mAP)	Modeling Approach
1	TeamKinetics	0.2072	I3D ConvNet with dense per-frame outputs
2	UMICH-VL	0.1803	We build an ensemble of Temporal Hourglass Networks (THGs), a novel architecture which consists of temporal convolutional layers, applied to several types of frame-wise feature vectors.
3	DR/OBU	0.1796	Two parallel convolutional neural networks (CNNs) extracting static (i.e., independent) appearance and optical flow features and scores for each frame, plus, there is another parallel audio feature extraction stream using Soundnet CNN, which is scored using a SVM.

Charades dataset

Publications

1. The Kinetics Human Action Video Dataset. Kay, Carreira, Simonyan, Zhang, Hillier, Vijayanarasimhan, Viola, Green, Back, Natsev, Suleyman and Zisserman, arXiv 2017.

2.Quo Vadis Action Recognition: a New Model and the Kinetics Dataset. Carreira and Zisserman, CVPR 2017

Conclusions

- Strengths:
 - Pretraining on Kinetics seems generally helpful
 - 3D ConvNets perform and transfer well
- Weaknesses:
 - Does not cover mid and long-term temporal modelling
 - Not appropriate directly as a curriculum for deployable robots to learn about human actions

AVA: A Video Dataset of Spatiotemporally Localized Atomic Visual Actions

Chunhui Gu, Chen Sun, David Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jitendra Malik from Google Research

June 20, 2018 at Salt Lake City, CVPR18

Why a New Action Dataset?

- Person-centric actions
- Atomic actions
- Multiple actions over single person
- Exhaustivity
- Action transitions over time
- Realistic scenes and diverse environment

AVA Examples: Answer Phone

AVA Examples: Clink Glass

AVA Examples: Dig

AVA Examples: Give/Serve (object) to (person)

80 Atomic Actions in AVA

run/jog walk jump stand sit lie/sleep bend/bow crawl swim dance get up fall down crouch/kneel martial art

Pose (14)

talk to watch listen to sing to kiss hug grab lift kick give/serve to take from play with kids hand shake hand clap hand wave fight/hit push

Person-Person (17)

lift/pick up smoke put down sail boat carry row boat hold fishing throw touch catch cook eat kick drink paint dig cut shovel chop shoot press take a photo dress / put on clothing extract brush teeth ride (e.g., bike, car, horse) read clink glass write

Person-Object (49)

hit

stir

open work on a computer close answer phone enter climb (e.g., mountain) exit play board game play with pets drive (e.g., a car) push (an object) pull (an object) point to (an object) play musical instrument text on/look at a cellphone turn (e.g., screwdriver)

watch (e.g., TV)

Atomicity from 3-sec segment sampled at 1Hz

Left: Kneel, Talk to Right: Stand, Listen, Shoot

Pipeline Overview

sit ride read

Dataset Statistics

AVA Dataset Size

- Number of videos: 430
- Number of segments: 386K
- Number of labeled bounding boxes: 614K
- Number of person tracks: 81K
- Number of labeled actions: 1.58M

Label Frequency

Long-tail distribution of action classes

Action Transition over Time

First Action	Second Action	NPMI
Watch (TV/monitor)	Work on a computer	0.64
Open (window/door)	Close (door/box)	0.59
Text on/Look at a cell phone	Answer phone	0.53
Listen to (a person)	Talk to (a person)	0.47
Fall down	Lie/Sleep	0.46
Talk to (a person)	Listen to (a person)	0.43
Stand	Sit	0.40
Walk	Stand	0.40

Action Co-occurrence among Persons

Person 1 Action	Person 2 Action	NPMI
Ride (bike/car/horse)	Drive (car/truck)	0.60
Play musical instrument	Listen to (music)	0.57
Take (object)	Give/Serve (object)	0.51
Talk to (a person)	Listen to (a person)	0.46
Stand	Sit	0.31
Play musical instrument	Dance	0.23
Watch (a person)	Write	0.15
Walk	Run/Jog	0.15

Baseline Performance

Original Baseline 1

Faster R-CNN with ResNet-101 from ImageNet

Method	mAP	
Baseline 1	11.3	

Original AVA model – Baseline 2

Original Baseline 2

Flow I3D from Kinetics-400 + RGB I3D from Kinetics-400 + ResNet-50 from ImageNet (in Faster R-CNN framework)

Method	mAP
Baseline 1	11.3
Baseline 2	15.6

AVA challenge 2018:

arXiv.org > cs > arXiv:1807.10066

Computer Science > Computer Vision and Pattern Recognition

A Better Baseline for AVA

Rohit Girdhar, João Carreira, Carl Doersch, Andrew Zisserman (Submitted on 26 Jul 2018)

RGB I3D (in Faster R-CNN framework)

Method	mAP
Baseline 1	11.3
Baseline 2	15.6
Ours	21.0

Other key differences:

- Data augmentation
- Class-agnostic bounding box regressor

AVA challenge 2018

Jianwen Jiang¹, Yu Cao², Lin Song³, Shiwei Zhang⁴ Yunkai Li⁵, Ziyao Xu⁵, Qian Wu⁶, Chuang Gan^{1*}, Chi Zhang^{5*}, Gang Yu^{5*}
¹Tsinghua University, jjw17@mails.tsinghua.edu.cn, ganchuang1990@gmail.com
²Beihang University, cqcy1208@buaa.edu.cn
³Xian Jiaotong University, stevengrove@xtu.xjtu.edu.cn
⁴Huazhong University of Science and Technology, swzhang@hust.edu.cn
⁵Megvii Inc. (Face++), {liyunkai, xuziyao, zhangchi, yugang}@megvii.com
⁶Zhejiang University, wq1601@zju.edu.cn

Task #1 - Computer Vision

Ranking	Username	Organization	mAP@0.5loU
1	Jianwen Jiang	Tsinghua University	21.08
2	Rohit Girdhar	DeepMind	21.03
3	Ting Yao	YH Technologies Co., Ltd.	19.60
4	George Lee	Fudan	17.16
5	Xiyang Dai	UMD	16.70
6	Peppa Pig	For ECCV	13.56
7	Ho Ran	Ran Ho	13.46
8	Ke Yun Yun	Yun Ke	13.05
9	Kevin Lin	University of Washington	12.25
10	Oytun Ulutan	UCSB	11.36
11	Gurkirt Singh	Oxford Brookes University	9.42
12	cliff wang	LW	7.81
13	x G	BLWC	7.81
14	Bin Wang	Little Wheel Co.	0.66

For context: Winning team architecture

Newest model:

arXiv.org > cs > arXiv:1812.02707

Computer Science > Computer Vision and Pattern Recognitio

Video Action Transformer Network

Rohit Girdhar, João Carreira, Carl Doersch, Andrew Zisserman

(Submitted on 6 Dec 2018 (v1), last revised 17 May 2019 (this version, v2))

ActionTransformer block: person-specific self attention

Repurposing the Transformer (NIPS'17) for Spatiotemporal Action Detection

Vaswani et al. Attention is all you need. NIPS'17 Similar ideas also explored in Sun et al. Actor Centric Relation Networks. ECCV'18

Conclusions

- Action recognition dataset where models trained on it may have directly practical applications (unlike Kinetics)
- Performance still rather low (but good improvements this year: check ActivityNet's workshop tomorrow)
- Lots of research opportunities

Thank you!